A novel approach for joint indoor localization and activity recognition using a hybrid CNN-GRU and MRF framework
This work proposes a new hybrid model for joint indoor localization and activity recognition by combining a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) model with a Markov Random Field (MRF) for better classification. The CNN-GRU successfully captures spatial and temporal dependencie...
Saved in:
Published in | PloS one Vol. 20; no. 8; p. e0328181 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.08.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This work proposes a new hybrid model for joint indoor localization and activity recognition by combining a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) model with a Markov Random Field (MRF) for better classification. The CNN-GRU successfully captures spatial and temporal dependencies, while the MRF models the mutual relations of activities and locations by estimating their joint probability distribution. The new system was tested on a public smart home dataset with four activities (sitting, lying, walking, and standing) and four indoor locations (kitchen, bedroom, living room, and stairs). The hybrid framework obtained an accuracy of 95% for activity recognition and 93% for indoor localization with a combined activity-location classification accuracy of 81%. Such results confirm the ability of the system to provide robust predictions in real-world smart environments, make it highly suitable for healthcare and intelligent living applications, and is efficient and deployable in real-world scenarios, addressing the critical challenges of noisy and dynamic indoor environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0328181 |