A lightweight intelligent compression method for fast Sea Level Anomaly data transmission
Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic...
Saved in:
Published in | PloS one Vol. 20; no. 8; p. e0327220 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
18.08.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN’s superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements. |
---|---|
AbstractList | Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements. Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 x compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements. Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements. |
Audience | Academic |
Author | Dai, Zeyuan Ma, Xiaodong Wan, Xiang Wang, Dong Zhang, Lei |
AuthorAffiliation | Dalian Maritime University, CHINA Department of Military and Marine Surveying and Mapping, Dalian Naval Academy, Dalian, China |
AuthorAffiliation_xml | – name: Department of Military and Marine Surveying and Mapping, Dalian Naval Academy, Dalian, China – name: Dalian Maritime University, CHINA |
Author_xml | – sequence: 1 givenname: Xiaodong orcidid: 0009-0003-0928-3027 surname: Ma fullname: Ma, Xiaodong – sequence: 2 givenname: Xiang surname: Wan fullname: Wan, Xiang – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 4 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 5 givenname: Zeyuan surname: Dai fullname: Dai, Zeyuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40824961$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk21r1EAQx4NU7IN-A9GAIPrizn1O8kqO4sPBQcGq4KtlkmzuUjbZ6-6m2m_vXC8tF-kLCWzC7G_-k_kzc5oc9a43SfKSkjnlGf1w5Qbfg51vMTwnnGWMkSfJCS04mylG-NHB93FyGsIVIZLnSj1LjgXJmSgUPUl-LVLbrjfxt9mdadtHYzFg-phWrtt6E0Lr-rQzcePqtHE-bSDE9NJAujI3xqaL3nVgb9MaIqTRQx-69i7nefK0ARvMi_F9lvz4_On7-dfZ6uLL8nyxmlVSFmSmMiaVYRkpWVlIKaHgitOScyagNlxlnAHjrFQiVwUlDauaUhBJVJ5JVSvgZ8nrve7WuqBHV4LGfKKwRSGQWO6J2sGV3vq2A3-rHbT6LuD8WoOPbWWNFlASSSthCpEJLFxATdCrJs-KnJgsQ62PY7Wh7ExdoVEe7ER0etO3G712N5oyrojMFSq8GxW8ux5MiBoNq9B16I0b9j9eUCYFRfTNP-jj7Y3UGrCDtm8cFq52onqRS0YLimpIzR-h8KlN11Y4Q02L8UnC-0kCMtH8iWsYQtDLy2__z178nLJvD9iNARs3wdkh4syEKfjq0OoHj--HFwGxByrvQvCmeUAo0bsdubdL73ZEjzvC_wKuxgAV |
Cites_doi | 10.1175/JPO-D-12-0133.1 10.1109/JIOT.2020.2988733 10.1109/PCS.2018.8456308 10.5194/os-20-1035-2024 10.1145/3343031.3350849 10.3390/rs14051159 10.1016/j.asr.2018.07.017 10.1016/j.asr.2021.01.022 10.5194/gmd-9-4381-2016 10.5670/oceanog.1988.01 10.1145/321607.321609 10.1109/83.535842 10.1016/0011-7471(70)90059-8 10.3390/rs11111349 10.1590/s1982-21702023000400010 10.1002/2016JC012256 10.1002/grl.50736 10.3390/sym11010001 10.3389/fmars.2021.753942 10.1175/2009JTECHO725.1 10.1109/IPDPS.2017.115 10.5194/gmd-12-4099-2019 10.1109/CENTCON52345.2021.9687944 10.1016/j.pocean.2011.01.002 10.5670/oceanog.2009.39 10.1007/s10872-023-00686-5 10.1016/j.seares.2025.102593 10.1137/0722023 10.1016/j.oceaneng.2025.120671 10.1093/bioinformatics/bty046 10.1145/3072959.3073659 10.1029/2018JC014196 10.1002/jgrc.20164 10.3389/fmars.2024.1411779 10.1016/j.rse.2020.112245 10.1109/INFCOM.2013.6566962 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Ma et al 2025 Ma et al 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Ma et al 2025 Ma et al – notice: 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0327220 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | A lightweight intelligent compression method for fast SLA data transmission |
EISSN | 1932-6203 |
ExternalDocumentID | 3240696144 oai_doaj_org_article_4ab051c4e94742a29ad0082f87980e77 PMC12360586 A852191125 40824961 10_1371_journal_pone_0327220 |
Genre | Journal Article |
GeographicLocations | China Japan Pacific Ocean |
GeographicLocations_xml | – name: Pacific Ocean – name: China – name: Japan |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ IPNFZ M48 NPM PUEGO RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5590-67256e270b2b9555a93631b3324ade36732a232b6486910f2cfb405068756d6a3 |
IEDL.DBID | DOA |
ISSN | 1932-6203 |
IngestDate | Sun Aug 31 00:08:09 EDT 2025 Wed Aug 27 01:30:49 EDT 2025 Thu Aug 21 18:19:27 EDT 2025 Wed Aug 20 00:28:11 EDT 2025 Tue Aug 19 11:10:54 EDT 2025 Wed Aug 20 23:55:00 EDT 2025 Tue Aug 26 03:41:29 EDT 2025 Wed Aug 20 03:25:29 EDT 2025 Wed Aug 20 03:25:03 EDT 2025 Tue Aug 26 02:11:53 EDT 2025 Thu Aug 28 04:39:47 EDT 2025 Thu Aug 21 00:19:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5590-67256e270b2b9555a93631b3324ade36732a232b6486910f2cfb405068756d6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0009-0003-0928-3027 |
OpenAccessLink | https://doaj.org/article/4ab051c4e94742a29ad0082f87980e77 |
PMID | 40824961 |
PQID | 3240696144 |
PQPubID | 1436336 |
PageCount | e0327220 |
ParticipantIDs | plos_journals_3240696144 doaj_primary_oai_doaj_org_article_4ab051c4e94742a29ad0082f87980e77 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12360586 proquest_miscellaneous_3240912541 proquest_journals_3240696144 gale_infotracmisc_A852191125 gale_infotracacademiconefile_A852191125 gale_incontextgauss_ISR_A852191125 gale_incontextgauss_IOV_A852191125 gale_healthsolutions_A852191125 pubmed_primary_40824961 crossref_primary_10_1371_journal_pone_0327220 |
PublicationCentury | 2000 |
PublicationDate | 20250818 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250818 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Amores (pone.0327220.ref035) 2017; 122 S Abdalla (pone.0327220.ref025) 2021; 68 CB Trott (pone.0327220.ref030) 2023; 79 A Wallcraft (pone.0327220.ref028) 2007 D Zhao (pone.0327220.ref004) 2021; 254 L-L Fu (pone.0327220.ref023) 1988; 1 X Delaunay (pone.0327220.ref009) 2019; 12 S Iizuka (pone.0327220.ref048) 2017; 36 A Cazenave (pone.0327220.ref024) 2018; 62 X Wang (pone.0327220.ref043) 2018 A Hore (pone.0327220.ref049) 2010 Y Miyazawa (pone.0327220.ref026) 2003 L Kong (pone.0327220.ref018) 2013 G Yang (pone.0327220.ref034) 2013; 118 H Le (pone.0327220.ref017) 2023 Z Cheng (pone.0327220.ref010) 2018 R Nian (pone.0327220.ref040) 2021; 8 M Kösters (pone.0327220.ref005) 2018; 34 AH Baker (pone.0327220.ref015) 2016; 9 D Chelton (pone.0327220.ref001) 2011; 91 C Fanelli (pone.0327220.ref020) 2024; 20 S Kreft (pone.0327220.ref006) 2010 C Hu (pone.0327220.ref019) 2020; 7 Z Chen (pone.0327220.ref011) 2019 C Cabanes (pone.0327220.ref031) 2012; 9 A Said (pone.0327220.ref007) 1996; 5 B Buongiorno Nardelli (pone.0327220.ref021) 2022; 14 B Lim (pone.0327220.ref051) 2017 K Simonyan (pone.0327220.ref047) 2014 H Akima (pone.0327220.ref054) 1970; 17 Z Zhang (pone.0327220.ref002) 2013; 40 D Tao (pone.0327220.ref008) 2017 G Xu (pone.0327220.ref039) 2019; 11 L Zhang (pone.0327220.ref036) 2025 B Reagan (pone.0327220.ref014) 2018 X Wang (pone.0327220.ref044) 2021 DC Garcia (pone.0327220.ref016) 2023; 29 EP Chassignet (pone.0327220.ref029) 2009; 22 S Mascarenhas (pone.0327220.ref045) 2021 B Qiu (pone.0327220.ref032) 2001; 2 C Ledig (pone.0327220.ref042) 2017 K Beyer (pone.0327220.ref052) 1999 F Nencioli (pone.0327220.ref038) 2010; 27 S Jin (pone.0327220.ref012) 2019 I Goodfellow (pone.0327220.ref041) 2014; 27 M Tschannen (pone.0327220.ref013) 2018; 31 M Mateen (pone.0327220.ref046) 2018; 11 J Ji (pone.0327220.ref003) 2018; 123 DP Kingma (pone.0327220.ref050) 2014 A Okubo (pone.0327220.ref037) 1970 B Qiu (pone.0327220.ref033) 2013; 43 RE Carlson (pone.0327220.ref053) 1985; 22 J Cui (pone.0327220.ref022) 2025; 324 X Ma (pone.0327220.ref027) 2024; 11 |
References_xml | – volume: 43 start-page: 344 issue: 2 year: 2013 ident: pone.0327220.ref033 article-title: Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre publication-title: J Phys Oceanograph doi: 10.1175/JPO-D-12-0133.1 – volume: 7 start-page: 9980 issue: 10 year: 2020 ident: pone.0327220.ref019 article-title: Secure and efficient data collection and storage of IoT in smart ocean publication-title: IEEE Internet Thing J doi: 10.1109/JIOT.2020.2988733 – year: 2014 ident: pone.0327220.ref050 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – year: 2018 ident: pone.0327220.ref010 article-title: Deep convolutional autoencoder-based lossy image compression publication-title: 2018 Picture Coding Symposium (PCS). IEEE doi: 10.1109/PCS.2018.8456308 – volume: 20 start-page: 1035 issue: 4 year: 2024 ident: pone.0327220.ref020 article-title: Deep learning for the super resolution of Mediterranean sea surface temperature fields publication-title: Ocean Sci doi: 10.5194/os-20-1035-2024 – year: 2019 ident: pone.0327220.ref011 article-title: Lossy intermediate deep learning feature compression and evaluation publication-title: Proceedings of the 27th ACM International Conference on Multimedia doi: 10.1145/3343031.3350849 – volume: 14 start-page: 1159 issue: 5 year: 2022 ident: pone.0327220.ref021 article-title: Super-resolving ocean dynamics from space with computer vision algorithms publication-title: Remote Sensing doi: 10.3390/rs14051159 – volume: 62 start-page: 1639 issue: 7 year: 2018 ident: pone.0327220.ref024 article-title: Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? publication-title: Adv Space Res doi: 10.1016/j.asr.2018.07.017 – volume: 68 start-page: 319 issue: 2 year: 2021 ident: pone.0327220.ref025 article-title: Altimetry for the future: Building on 25 years of progress publication-title: Adv Space Res doi: 10.1016/j.asr.2021.01.022 – volume: 9 start-page: 4381 issue: 12 year: 2016 ident: pone.0327220.ref015 article-title: Evaluating lossy data compression on climate simulation data within a large ensemble publication-title: Geoscientific Model Develop doi: 10.5194/gmd-9-4381-2016 – volume-title: LZ77-like compression with fast random access. in 2010 Data Compression Conference year: 2010 ident: pone.0327220.ref006 – volume: 1 start-page: 4 issue: 2 year: 1988 ident: pone.0327220.ref023 article-title: Satellite altimetry: Observing ocean variability from space publication-title: Oceanography doi: 10.5670/oceanog.1988.01 – year: 2010 ident: pone.0327220.ref049 article-title: Image quality metrics: PSNR vs. SSIM publication-title: 2010 20th International Conference on Pattern Recognition. IEEE – year: 2007 ident: pone.0327220.ref028 article-title: Global ocean prediction using HYCOM. publication-title: 2007 DoD High Performance Computing Modernization Program Users Group Conference. IEEE – year: 2021 ident: pone.0327220.ref044 article-title: Real-esrgan: Training real-world blind super-resolution with pure synthetic data publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 17 start-page: 589 issue: 4 year: 1970 ident: pone.0327220.ref054 article-title: A new method of interpolation and smooth curve fitting based on local procedures publication-title: J ACM doi: 10.1145/321607.321609 – volume: 31 year: 2018 ident: pone.0327220.ref013 article-title: Deep generative models for distribution-preserving lossy compression publication-title: Adv Neural Informat Process Syst – volume: 5 start-page: 1303 issue: 9 year: 1996 ident: pone.0327220.ref007 article-title: An image multiresolution representation for lossless and lossy compression publication-title: IEEE Trans Image Process doi: 10.1109/83.535842 – year: 2014 ident: pone.0327220.ref047 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint – volume-title: Deep sea research and oceanographic abstracts year: 1970 ident: pone.0327220.ref037 article-title: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. doi: 10.1016/0011-7471(70)90059-8 – volume: 11 start-page: 1349 issue: 11 year: 2019 ident: pone.0327220.ref039 article-title: Oceanic eddy identification using an AI scheme publication-title: Remote Sensing doi: 10.3390/rs11111349 – volume: 29 issue: 04 year: 2023 ident: pone.0327220.ref016 article-title: Lossless and lossy compression of water-column profile data from multibeam echosounders based on image predictions and multiple-context entropy-encoding publication-title: Boletim de Ciências Geodésicas doi: 10.1590/s1982-21702023000400010 – volume: 122 start-page: 23 issue: 1 year: 2017 ident: pone.0327220.ref035 article-title: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum publication-title: J Geophys Res doi: 10.1002/2016JC012256 – volume: 40 start-page: 3677 issue: 14 year: 2013 ident: pone.0327220.ref002 article-title: Universal structure of mesoscale eddies in the ocean publication-title: Geophysical Res Letters doi: 10.1002/grl.50736 – year: 1999 ident: pone.0327220.ref052 article-title: When is “nearest neighbor” meaningful? In: Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7 – volume: 11 start-page: 1 issue: 1 year: 2018 ident: pone.0327220.ref046 article-title: Fundus image classification using VGG-19 architecture with PCA and SVD publication-title: Symmetry doi: 10.3390/sym11010001 – volume: 8 start-page: 753942 year: 2021 ident: pone.0327220.ref040 article-title: The identification and prediction of mesoscale eddy variation via memory in memory with scheduled sampling for sea level anomaly publication-title: Front Marine Sci doi: 10.3389/fmars.2021.753942 – volume: 27 start-page: 564 issue: 3 year: 2010 ident: pone.0327220.ref038 article-title: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight publication-title: J Atmospheric Ocean Technol doi: 10.1175/2009JTECHO725.1 – year: 2017 ident: pone.0327220.ref008 article-title: Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization. publication-title: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE doi: 10.1109/IPDPS.2017.115 – volume: 12 start-page: 4099 issue: 9 year: 2019 ident: pone.0327220.ref009 article-title: Evaluation of lossless and lossy algorithms for the compression of scientific datasets in netCDF-4 or HDF5 files publication-title: Geoscientific Model Development doi: 10.5194/gmd-12-4099-2019 – volume: 27 year: 2014 ident: pone.0327220.ref041 article-title: Generative adversarial nets publication-title: Adv Neural Information Process Syst – year: 2021 ident: pone.0327220.ref045 article-title: A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for image classification publication-title: 2021 International conference on disruptive technologies for multi-disciplinary research and applications (CENTCON). IEEE doi: 10.1109/CENTCON52345.2021.9687944 – volume: 91 start-page: 167 year: 2011 ident: pone.0327220.ref001 article-title: Global observations of nonlinear mesoscale eddies publication-title: Prog Oceanograph doi: 10.1016/j.pocean.2011.01.002 – volume: 22 start-page: 64 issue: 2 year: 2009 ident: pone.0327220.ref029 article-title: US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM) publication-title: Oceanography doi: 10.5670/oceanog.2009.39 – volume: 79 start-page: 423 issue: 4 year: 2023 ident: pone.0327220.ref030 article-title: Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts publication-title: J Oceanograph doi: 10.1007/s10872-023-00686-5 – start-page: 102593 year: 2025 ident: pone.0327220.ref036 article-title: Three-dimensional thermohaline reconstruction of mesoscale eddies under remote sensing observation: from the perspective of deep learning of layer depth sequences with fusion of physical mechanisms publication-title: J Sea Res doi: 10.1016/j.seares.2025.102593 – year: 2003 ident: pone.0327220.ref026 article-title: The JCOPE ocean forecast system. publication-title: First ARGO Science Workshop, November 12-14, 2003, Tokyo, Japan – volume: 22 start-page: 386 issue: 2 year: 1985 ident: pone.0327220.ref053 article-title: Monotone piecewise bicubic interpolation publication-title: SIAM J Numeric Analy doi: 10.1137/0722023 – volume: 324 start-page: 120671 year: 2025 ident: pone.0327220.ref022 article-title: High-resolution sea surface height reconstruction method based on deep learning gradient constraint embedding method publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.120671 – volume: 9 start-page: 1273 issue: 2 year: 2012 ident: pone.0327220.ref031 article-title: The CORA dataset: validation and diagnostics of ocean temperature and salinity in situ measurements publication-title: Ocean Sci Discussions – volume: 34 start-page: 2513 issue: 14 year: 2018 ident: pone.0327220.ref005 article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty046 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: pone.0327220.ref048 article-title: Globally and locally consistent image completion publication-title: ACM Trans Graph doi: 10.1145/3072959.3073659 – year: 2017 ident: pone.0327220.ref042 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2018 ident: pone.0327220.ref043 article-title: Esrgan: Enhanced super-resolution generative adversarial networks publication-title: Proceedings of the European Conference on Computer Vision (ECCV) Workshops – year: 2019 ident: pone.0327220.ref012 article-title: DeepSZ: A novel framework to compress deep neural networks by using error-bounded lossy compression publication-title: Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing – volume: 123 start-page: 8548 issue: 11 year: 2018 ident: pone.0327220.ref003 article-title: Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region publication-title: J Geophysical Res Oceans doi: 10.1029/2018JC014196 – year: 2023 ident: pone.0327220.ref017 article-title: Hierarchical autoencoder-based lossy compression for large-scale high-resolution scientific data publication-title: arXiv preprint – volume: 118 start-page: 1906 issue: 4 year: 2013 ident: pone.0327220.ref034 article-title: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures publication-title: JGR Oceans doi: 10.1002/jgrc.20164 – volume: 11 start-page: 1411779 year: 2024 ident: pone.0327220.ref027 article-title: A mesoscale eddy reconstruction method based on generative adversarial networks publication-title: Front Marine Sci doi: 10.3389/fmars.2024.1411779 – volume: 2 start-page: 61 year: 2001 ident: pone.0327220.ref032 article-title: Kuroshio and Oyashio currents publication-title: Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences – year: 2017 ident: pone.0327220.ref051 article-title: Enhanced deep residual networks for single image super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 254 start-page: 112245 year: 2021 ident: pone.0327220.ref004 article-title: Global chlorophyll distribution induced by mesoscale eddies publication-title: Remote Sensing Environ doi: 10.1016/j.rse.2020.112245 – year: 2018 ident: pone.0327220.ref014 article-title: Weightless: lossy weight encoding for deep neural network compression publication-title: International Conference on Machine Learning. PMLR – year: 2013 ident: pone.0327220.ref018 article-title: Data loss and reconstruction in sensor networks publication-title: 2013 Proceedings IEEE INFOCOM. IEEE doi: 10.1109/INFCOM.2013.6566962 |
SSID | ssj0053866 |
Score | 2.482367 |
Snippet | Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0327220 |
SubjectTerms | Accuracy Biology and Life Sciences Compression Compression ratio Computer and Information Sciences Computer applications Data compression Data processing Data transmission Datasets Deep learning Earth Sciences Engineering and Technology Learning strategies Marine machinery Mesoscale phenomena Mesoscale vortexes Methods Ocean circulation Oceanic vortices Oceans Performance degradation Physical Sciences Protection and preservation Real time Remote sensing Research and Analysis Methods Salinity Satellites Sea level Sea level anomalies Signal to noise ratio Vortices Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCC2PhYYBsGIQEP2VLbsZMnVCamgfiQGEPlyXIcZ0wqSVlSTfvvuXPcsKAJ8VJV9TlK78727-zz7wh5zpyFdcHYOM3gQ8D3uJCWxdYB2C6RG8CT-nz8JI9OxPt5Og8bbm1Iq1zPiX6iLhuLe-T73N_RxPDl9fJXjFWj8HQ1lNC4SW4hdRmmdKn5EHDBWJYyXJfjarofrLO3bGq3l3CmGFb5vrIcedb-YW6eLBdNex3w_Dt_8sqCdHiX3AlIks5602-QG67eJBthrLb0ZSCUfnWPfJ_RBcbgF34blJ4NLJwdxYzyPhO2pn0xaQoollam7eixM_QD5hTRWd38NItLiumktMPVDbwD-9wnJ4dvvx4cxaGkQmwhdMBEf4A4jqmkYEWepqnJueTTgoN2Tem4VJwZwFiFFJkEIFExWxUA6RIJYY0speEPyKQG9W0RikdwVSmFq5CTzsg8TUSZSwhslUiFMxGJ15rVy545Q_vjMwURR68ijZbQwRIReYPqH2SR99r_0Jyf6jCMtDAFzCJWuFxATG9YbkoEMVWm8ixxSkXkCRpP95dIh9GrZxnAFJjXWRqRZ14CuS9qTK45Nau21e8-f_sPoeMvI6EXQahqQPXWhAsN8J-QU2skuT2SBBvZUfMWutpaK63-4-vQc-1-1zc_HZrxoZgwV7tm1cvk8GwxjcjD3lsHzWKNcQH9I5KN_Hik-nFLffbDU48jV0-SZvLRv9_rMbnNsE4yUgdn22TSna_cDoC3rtj1I_Q3NWBA2Q priority: 102 providerName: ProQuest |
Title | A lightweight intelligent compression method for fast Sea Level Anomaly data transmission |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40824961 https://www.proquest.com/docview/3240696144 https://www.proquest.com/docview/3240912541 https://pubmed.ncbi.nlm.nih.gov/PMC12360586 https://doaj.org/article/4ab051c4e94742a29ad0082f87980e77 http://dx.doi.org/10.1371/journal.pone.0327220 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegvPCCGF8LjGIQEvCQLbUdO3nsppWBYKCNofJkOYkDk0pSkVaI_547240aNAkeeLGi-Byld2ffXXP3O0KeM1uCXTBlnGYwCLiOC1myuLTgbFeIDeBAfd6fypML8XaezrdafWFOmIcH9ow7EKYAvSmFzQVEcYblpkKzVWcqzxKrXB052LxNMOXPYNjFUoZCOa4mB0Eu-8u2sfsJZ4phf-8tQ-Tw-vtTebRctN1VLuefmZNbpmh2m9wKPiSd-nffIddsc4fshF3a0ZcBSvrVXfJlShcYff90f4DSyx5_c0Uxl9znwDbUt5Gm4L_S2nQrem4NfYfZRHTatN_N4hfFRFK6QrsGeoFr7pGL2fGno5M4NFOISwgaMMUfnBvLVFKwIk_T1ORc8knBwaEyleVScWAuZ4UUmQQXomZlXYAzl0gIaGQlDb9PRg2wb5dQ_PhWV1LYGtHojMzTRFS5hJBWiVRYE5F4w1m99JgZ2n04UxBreBZplIQOkojIIbK_p0XEa3cD9EAHPdB_04OIPEHhaV8-2u9bPc3AQYETnaUReeYoEPWiwbSar2bddfrNh8__QHR-NiB6EYjqFlhfmlDKAL8J0bQGlHsDSpBROZjeRVXbcKXT3FUiY5AOKzfqd_X0034aH4qpco1t154mh2eLSUQeeG3tOYvdxQWsj0g20OMB64czzeU3BzqOKD1JmsmH_0NYj8hNhn2UEVo42yOj1Y-1fQzO3aoYk-tqrmDMjiY4zl6PyY3D49OPZ2O3w38D1EZMkg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIm3UcOzkgtDyqXbotEn1oORkncUqlJVmarKr-KX4jM86DBlWISy-raD12kvF4HvH4G0KeM5OAXdCJG4Tww-HajUXC3MSAs50iNoAF9dndE-ND_mkWzFbIr_YsDKZVtjrRKuq0SPAb-ZZvz2hi-PJ28dPFqlG4u9qW0KjFYsecn0HIVr6ZfID5fcHY9seD92O3qSrgJuA9Y647WHnDpBezOAqCQEe-8IexDzfQqfGF9JkGNyMWPBRgSzOWZDF4NZ4Az16kQvsw7jVyHQyvhytKzroAD3SHEM3xPF8Otxpp2FwUudn0fCYZVhW_YP5slYDOFgwW86K8zNH9O1_zggHcvk1uNZ4rHdWitkpWTH6HrDa6oaSvGgDr13fJ1xGdY8x_Zj-70pMO9bOimMFeZ97mtC5eTcFrppkuK7pvNJ1iDhMd5cUPPT-nmL5KK7SmII3Y5x45vBJm3yeDHNi3Rihu-WWp4CZDDDwtosDjaSQgkJY84EY7xG05qxY1Uoey23USIpyaRQpnQjUz4ZB3yP6OFnG27R_F6bFqlq3iOgatlXATccnhUSOdotOUhTIKPSOlQzZw8lR9aLXTFmoUglsEdoQFDnlmKRBrI8dknmO9LEs1-Xz0H0T7X3pELxuirADWJ7o5QAHvhBhePcr1HiXMUdJrXkNRa7lSqj9rC3q24nd589OuGQfFBL3cFMuaJoKx-dAhD2pp7TiLNc059HdI2JPjHuv7LfnJdwt1jthAXhCKh_9-rg1yY3ywO1XTyd7OI3KTYY1mhC0O18mgOl2ax-A4VvETu1op-XbV6uE33g557g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGAGgYCHrKnj2MkDQoVRrWwMxDZUnoyTOGNSScqSatq_xl_HXeKEBU2Il71UUX12kvP5PuLz7wh5ykwCdkEnbhDCD4drNxYJcxMDznaK2AA1qM-HPbF9yN_PgtkK-dWehcG0ylYn1oo6LRL8Rj706zOaGL4MM5sW8Wlr8nrx08UKUrjT2pbTaERkx5ydQvhWvppuwVw_Y2zy7uDttmsrDLgJeNKY9w4W3zDpxSyOgiDQkS_8UezDzXRqfCF9psHliAUPBdjVjCVZDB6OJ8DLF6nQPox7hVyVfjDCNSZnXbAHekQIe1TPl6OhlYzNRZGbTc9nkmGF8XOmsK4Y0NmFwWJelBc5vX_nbp4zhpOb5Ib1Yum4EbtVsmLyW2TV6omSvrBg1i9vk69jOsf4_7T-BEuPOwTQimI2e5OFm9OmkDUFD5pmuqzovtF0F_OZ6Dgvfuj5GcVUVlqhZQXJxD53yOGlMPsuGeTAvjVCcfsvSwU3GeLhaREFHk8jAUG15AE32iFuy1m1aFA7VL11JyHaaVikcCaUnQmHvEH2d7SIuV3_UZwcKbuEFdcxaLCEm4hLDo8a6RQdqCyUUegZKR2ygZOnmgOsneZQ4xBcJLApLHDIk5oCcTdylOAjvSxLNf345T-I9j_3iJ5boqwA1ifaHqaAd0I8rx7leo8S5ijpNa-hqLVcKdWfdQY9W_G7uPlx14yDYrJeboplQxPB2HzkkHuNtHacxfrmHPo7JOzJcY_1_Zb8-HsNe444QV4Qivv_fq4Ncg0Ug9qd7u08INcZlmtGBONwnQyqk6V5CD5kFT-qFysl3y5bO_wG5EZ-JA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+intelligent+compression+method+for+fast+Sea+Level+Anomaly+data+transmission&rft.jtitle=PloS+one&rft.au=Ma%2C+Xiaodong&rft.au=Wan%2C+Xiang&rft.au=Zhang%2C+Lei&rft.au=Wang%2C+Dong&rft.date=2025-08-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=8&rft.spage=e0327220&rft_id=info:doi/10.1371%2Fjournal.pone.0327220&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |