A lightweight intelligent compression method for fast Sea Level Anomaly data transmission

Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 8; p. e0327220
Main Authors Ma, Xiaodong, Wan, Xiang, Zhang, Lei, Wang, Dong, Dai, Zeyuan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.08.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN’s superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.
AbstractList Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.
Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 x compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.
Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN's superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.
Audience Academic
Author Dai, Zeyuan
Ma, Xiaodong
Wan, Xiang
Wang, Dong
Zhang, Lei
AuthorAffiliation Dalian Maritime University, CHINA
Department of Military and Marine Surveying and Mapping, Dalian Naval Academy, Dalian, China
AuthorAffiliation_xml – name: Department of Military and Marine Surveying and Mapping, Dalian Naval Academy, Dalian, China
– name: Dalian Maritime University, CHINA
Author_xml – sequence: 1
  givenname: Xiaodong
  orcidid: 0009-0003-0928-3027
  surname: Ma
  fullname: Ma, Xiaodong
– sequence: 2
  givenname: Xiang
  surname: Wan
  fullname: Wan, Xiang
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 4
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
– sequence: 5
  givenname: Zeyuan
  surname: Dai
  fullname: Dai, Zeyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40824961$$D View this record in MEDLINE/PubMed
BookMark eNqNk21r1EAQx4NU7IN-A9GAIPrizn1O8kqO4sPBQcGq4KtlkmzuUjbZ6-6m2m_vXC8tF-kLCWzC7G_-k_kzc5oc9a43SfKSkjnlGf1w5Qbfg51vMTwnnGWMkSfJCS04mylG-NHB93FyGsIVIZLnSj1LjgXJmSgUPUl-LVLbrjfxt9mdadtHYzFg-phWrtt6E0Lr-rQzcePqtHE-bSDE9NJAujI3xqaL3nVgb9MaIqTRQx-69i7nefK0ARvMi_F9lvz4_On7-dfZ6uLL8nyxmlVSFmSmMiaVYRkpWVlIKaHgitOScyagNlxlnAHjrFQiVwUlDauaUhBJVJ5JVSvgZ8nrve7WuqBHV4LGfKKwRSGQWO6J2sGV3vq2A3-rHbT6LuD8WoOPbWWNFlASSSthCpEJLFxATdCrJs-KnJgsQ62PY7Wh7ExdoVEe7ER0etO3G712N5oyrojMFSq8GxW8ux5MiBoNq9B16I0b9j9eUCYFRfTNP-jj7Y3UGrCDtm8cFq52onqRS0YLimpIzR-h8KlN11Y4Q02L8UnC-0kCMtH8iWsYQtDLy2__z178nLJvD9iNARs3wdkh4syEKfjq0OoHj--HFwGxByrvQvCmeUAo0bsdubdL73ZEjzvC_wKuxgAV
Cites_doi 10.1175/JPO-D-12-0133.1
10.1109/JIOT.2020.2988733
10.1109/PCS.2018.8456308
10.5194/os-20-1035-2024
10.1145/3343031.3350849
10.3390/rs14051159
10.1016/j.asr.2018.07.017
10.1016/j.asr.2021.01.022
10.5194/gmd-9-4381-2016
10.5670/oceanog.1988.01
10.1145/321607.321609
10.1109/83.535842
10.1016/0011-7471(70)90059-8
10.3390/rs11111349
10.1590/s1982-21702023000400010
10.1002/2016JC012256
10.1002/grl.50736
10.3390/sym11010001
10.3389/fmars.2021.753942
10.1175/2009JTECHO725.1
10.1109/IPDPS.2017.115
10.5194/gmd-12-4099-2019
10.1109/CENTCON52345.2021.9687944
10.1016/j.pocean.2011.01.002
10.5670/oceanog.2009.39
10.1007/s10872-023-00686-5
10.1016/j.seares.2025.102593
10.1137/0722023
10.1016/j.oceaneng.2025.120671
10.1093/bioinformatics/bty046
10.1145/3072959.3073659
10.1029/2018JC014196
10.1002/jgrc.20164
10.3389/fmars.2024.1411779
10.1016/j.rse.2020.112245
10.1109/INFCOM.2013.6566962
ContentType Journal Article
Copyright Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Ma et al 2025 Ma et al
2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Ma et al 2025 Ma et al
– notice: 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0327220
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

MEDLINE - Academic
CrossRef


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A lightweight intelligent compression method for fast SLA data transmission
EISSN 1932-6203
ExternalDocumentID 3240696144
oai_doaj_org_article_4ab051c4e94742a29ad0082f87980e77
PMC12360586
A852191125
40824961
10_1371_journal_pone_0327220
Genre Journal Article
GeographicLocations China
Japan
Pacific Ocean
GeographicLocations_xml – name: Pacific Ocean
– name: China
– name: Japan
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
IPNFZ
M48
NPM
PUEGO
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c5590-67256e270b2b9555a93631b3324ade36732a232b6486910f2cfb405068756d6a3
IEDL.DBID DOA
ISSN 1932-6203
IngestDate Sun Aug 31 00:08:09 EDT 2025
Wed Aug 27 01:30:49 EDT 2025
Thu Aug 21 18:19:27 EDT 2025
Wed Aug 20 00:28:11 EDT 2025
Tue Aug 19 11:10:54 EDT 2025
Wed Aug 20 23:55:00 EDT 2025
Tue Aug 26 03:41:29 EDT 2025
Wed Aug 20 03:25:29 EDT 2025
Wed Aug 20 03:25:03 EDT 2025
Tue Aug 26 02:11:53 EDT 2025
Thu Aug 28 04:39:47 EDT 2025
Thu Aug 21 00:19:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright: © 2025 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5590-67256e270b2b9555a93631b3324ade36732a232b6486910f2cfb405068756d6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0003-0928-3027
OpenAccessLink https://doaj.org/article/4ab051c4e94742a29ad0082f87980e77
PMID 40824961
PQID 3240696144
PQPubID 1436336
PageCount e0327220
ParticipantIDs plos_journals_3240696144
doaj_primary_oai_doaj_org_article_4ab051c4e94742a29ad0082f87980e77
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12360586
proquest_miscellaneous_3240912541
proquest_journals_3240696144
gale_infotracmisc_A852191125
gale_infotracacademiconefile_A852191125
gale_incontextgauss_ISR_A852191125
gale_incontextgauss_IOV_A852191125
gale_healthsolutions_A852191125
pubmed_primary_40824961
crossref_primary_10_1371_journal_pone_0327220
PublicationCentury 2000
PublicationDate 20250818
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 8
  year: 2025
  text: 20250818
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Amores (pone.0327220.ref035) 2017; 122
S Abdalla (pone.0327220.ref025) 2021; 68
CB Trott (pone.0327220.ref030) 2023; 79
A Wallcraft (pone.0327220.ref028) 2007
D Zhao (pone.0327220.ref004) 2021; 254
L-L Fu (pone.0327220.ref023) 1988; 1
X Delaunay (pone.0327220.ref009) 2019; 12
S Iizuka (pone.0327220.ref048) 2017; 36
A Cazenave (pone.0327220.ref024) 2018; 62
X Wang (pone.0327220.ref043) 2018
A Hore (pone.0327220.ref049) 2010
Y Miyazawa (pone.0327220.ref026) 2003
L Kong (pone.0327220.ref018) 2013
G Yang (pone.0327220.ref034) 2013; 118
H Le (pone.0327220.ref017) 2023
Z Cheng (pone.0327220.ref010) 2018
R Nian (pone.0327220.ref040) 2021; 8
M Kösters (pone.0327220.ref005) 2018; 34
AH Baker (pone.0327220.ref015) 2016; 9
D Chelton (pone.0327220.ref001) 2011; 91
C Fanelli (pone.0327220.ref020) 2024; 20
S Kreft (pone.0327220.ref006) 2010
C Hu (pone.0327220.ref019) 2020; 7
Z Chen (pone.0327220.ref011) 2019
C Cabanes (pone.0327220.ref031) 2012; 9
A Said (pone.0327220.ref007) 1996; 5
B Buongiorno Nardelli (pone.0327220.ref021) 2022; 14
B Lim (pone.0327220.ref051) 2017
K Simonyan (pone.0327220.ref047) 2014
H Akima (pone.0327220.ref054) 1970; 17
Z Zhang (pone.0327220.ref002) 2013; 40
D Tao (pone.0327220.ref008) 2017
G Xu (pone.0327220.ref039) 2019; 11
L Zhang (pone.0327220.ref036) 2025
B Reagan (pone.0327220.ref014) 2018
X Wang (pone.0327220.ref044) 2021
DC Garcia (pone.0327220.ref016) 2023; 29
EP Chassignet (pone.0327220.ref029) 2009; 22
S Mascarenhas (pone.0327220.ref045) 2021
B Qiu (pone.0327220.ref032) 2001; 2
C Ledig (pone.0327220.ref042) 2017
K Beyer (pone.0327220.ref052) 1999
F Nencioli (pone.0327220.ref038) 2010; 27
S Jin (pone.0327220.ref012) 2019
I Goodfellow (pone.0327220.ref041) 2014; 27
M Tschannen (pone.0327220.ref013) 2018; 31
M Mateen (pone.0327220.ref046) 2018; 11
J Ji (pone.0327220.ref003) 2018; 123
DP Kingma (pone.0327220.ref050) 2014
A Okubo (pone.0327220.ref037) 1970
B Qiu (pone.0327220.ref033) 2013; 43
RE Carlson (pone.0327220.ref053) 1985; 22
J Cui (pone.0327220.ref022) 2025; 324
X Ma (pone.0327220.ref027) 2024; 11
References_xml – volume: 43
  start-page: 344
  issue: 2
  year: 2013
  ident: pone.0327220.ref033
  article-title: Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre
  publication-title: J Phys Oceanograph
  doi: 10.1175/JPO-D-12-0133.1
– volume: 7
  start-page: 9980
  issue: 10
  year: 2020
  ident: pone.0327220.ref019
  article-title: Secure and efficient data collection and storage of IoT in smart ocean
  publication-title: IEEE Internet Thing J
  doi: 10.1109/JIOT.2020.2988733
– year: 2014
  ident: pone.0327220.ref050
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint
– year: 2018
  ident: pone.0327220.ref010
  article-title: Deep convolutional autoencoder-based lossy image compression
  publication-title: 2018 Picture Coding Symposium (PCS). IEEE
  doi: 10.1109/PCS.2018.8456308
– volume: 20
  start-page: 1035
  issue: 4
  year: 2024
  ident: pone.0327220.ref020
  article-title: Deep learning for the super resolution of Mediterranean sea surface temperature fields
  publication-title: Ocean Sci
  doi: 10.5194/os-20-1035-2024
– year: 2019
  ident: pone.0327220.ref011
  article-title: Lossy intermediate deep learning feature compression and evaluation
  publication-title: Proceedings of the 27th ACM International Conference on Multimedia
  doi: 10.1145/3343031.3350849
– volume: 14
  start-page: 1159
  issue: 5
  year: 2022
  ident: pone.0327220.ref021
  article-title: Super-resolving ocean dynamics from space with computer vision algorithms
  publication-title: Remote Sensing
  doi: 10.3390/rs14051159
– volume: 62
  start-page: 1639
  issue: 7
  year: 2018
  ident: pone.0327220.ref024
  article-title: Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges?
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2018.07.017
– volume: 68
  start-page: 319
  issue: 2
  year: 2021
  ident: pone.0327220.ref025
  article-title: Altimetry for the future: Building on 25 years of progress
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2021.01.022
– volume: 9
  start-page: 4381
  issue: 12
  year: 2016
  ident: pone.0327220.ref015
  article-title: Evaluating lossy data compression on climate simulation data within a large ensemble
  publication-title: Geoscientific Model Develop
  doi: 10.5194/gmd-9-4381-2016
– volume-title: LZ77-like compression with fast random access. in 2010 Data Compression Conference
  year: 2010
  ident: pone.0327220.ref006
– volume: 1
  start-page: 4
  issue: 2
  year: 1988
  ident: pone.0327220.ref023
  article-title: Satellite altimetry: Observing ocean variability from space
  publication-title: Oceanography
  doi: 10.5670/oceanog.1988.01
– year: 2010
  ident: pone.0327220.ref049
  article-title: Image quality metrics: PSNR vs. SSIM
  publication-title: 2010 20th International Conference on Pattern Recognition. IEEE
– year: 2007
  ident: pone.0327220.ref028
  article-title: Global ocean prediction using HYCOM.
  publication-title: 2007 DoD High Performance Computing Modernization Program Users Group Conference. IEEE
– year: 2021
  ident: pone.0327220.ref044
  article-title: Real-esrgan: Training real-world blind super-resolution with pure synthetic data
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 17
  start-page: 589
  issue: 4
  year: 1970
  ident: pone.0327220.ref054
  article-title: A new method of interpolation and smooth curve fitting based on local procedures
  publication-title: J ACM
  doi: 10.1145/321607.321609
– volume: 31
  year: 2018
  ident: pone.0327220.ref013
  article-title: Deep generative models for distribution-preserving lossy compression
  publication-title: Adv Neural Informat Process Syst
– volume: 5
  start-page: 1303
  issue: 9
  year: 1996
  ident: pone.0327220.ref007
  article-title: An image multiresolution representation for lossless and lossy compression
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.535842
– year: 2014
  ident: pone.0327220.ref047
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint
– volume-title: Deep sea research and oceanographic abstracts
  year: 1970
  ident: pone.0327220.ref037
  article-title: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences.
  doi: 10.1016/0011-7471(70)90059-8
– volume: 11
  start-page: 1349
  issue: 11
  year: 2019
  ident: pone.0327220.ref039
  article-title: Oceanic eddy identification using an AI scheme
  publication-title: Remote Sensing
  doi: 10.3390/rs11111349
– volume: 29
  issue: 04
  year: 2023
  ident: pone.0327220.ref016
  article-title: Lossless and lossy compression of water-column profile data from multibeam echosounders based on image predictions and multiple-context entropy-encoding
  publication-title: Boletim de Ciências Geodésicas
  doi: 10.1590/s1982-21702023000400010
– volume: 122
  start-page: 23
  issue: 1
  year: 2017
  ident: pone.0327220.ref035
  article-title: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum
  publication-title: J Geophys Res
  doi: 10.1002/2016JC012256
– volume: 40
  start-page: 3677
  issue: 14
  year: 2013
  ident: pone.0327220.ref002
  article-title: Universal structure of mesoscale eddies in the ocean
  publication-title: Geophysical Res Letters
  doi: 10.1002/grl.50736
– year: 1999
  ident: pone.0327220.ref052
  article-title: When is “nearest neighbor” meaningful? In: Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0327220.ref046
  article-title: Fundus image classification using VGG-19 architecture with PCA and SVD
  publication-title: Symmetry
  doi: 10.3390/sym11010001
– volume: 8
  start-page: 753942
  year: 2021
  ident: pone.0327220.ref040
  article-title: The identification and prediction of mesoscale eddy variation via memory in memory with scheduled sampling for sea level anomaly
  publication-title: Front Marine Sci
  doi: 10.3389/fmars.2021.753942
– volume: 27
  start-page: 564
  issue: 3
  year: 2010
  ident: pone.0327220.ref038
  article-title: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight
  publication-title: J Atmospheric Ocean Technol
  doi: 10.1175/2009JTECHO725.1
– year: 2017
  ident: pone.0327220.ref008
  article-title: Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization.
  publication-title: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE
  doi: 10.1109/IPDPS.2017.115
– volume: 12
  start-page: 4099
  issue: 9
  year: 2019
  ident: pone.0327220.ref009
  article-title: Evaluation of lossless and lossy algorithms for the compression of scientific datasets in netCDF-4 or HDF5 files
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-12-4099-2019
– volume: 27
  year: 2014
  ident: pone.0327220.ref041
  article-title: Generative adversarial nets
  publication-title: Adv Neural Information Process Syst
– year: 2021
  ident: pone.0327220.ref045
  article-title: A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for image classification
  publication-title: 2021 International conference on disruptive technologies for multi-disciplinary research and applications (CENTCON). IEEE
  doi: 10.1109/CENTCON52345.2021.9687944
– volume: 91
  start-page: 167
  year: 2011
  ident: pone.0327220.ref001
  article-title: Global observations of nonlinear mesoscale eddies
  publication-title: Prog Oceanograph
  doi: 10.1016/j.pocean.2011.01.002
– volume: 22
  start-page: 64
  issue: 2
  year: 2009
  ident: pone.0327220.ref029
  article-title: US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM)
  publication-title: Oceanography
  doi: 10.5670/oceanog.2009.39
– volume: 79
  start-page: 423
  issue: 4
  year: 2023
  ident: pone.0327220.ref030
  article-title: Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts
  publication-title: J Oceanograph
  doi: 10.1007/s10872-023-00686-5
– start-page: 102593
  year: 2025
  ident: pone.0327220.ref036
  article-title: Three-dimensional thermohaline reconstruction of mesoscale eddies under remote sensing observation: from the perspective of deep learning of layer depth sequences with fusion of physical mechanisms
  publication-title: J Sea Res
  doi: 10.1016/j.seares.2025.102593
– year: 2003
  ident: pone.0327220.ref026
  article-title: The JCOPE ocean forecast system.
  publication-title: First ARGO Science Workshop, November 12-14, 2003, Tokyo, Japan
– volume: 22
  start-page: 386
  issue: 2
  year: 1985
  ident: pone.0327220.ref053
  article-title: Monotone piecewise bicubic interpolation
  publication-title: SIAM J Numeric Analy
  doi: 10.1137/0722023
– volume: 324
  start-page: 120671
  year: 2025
  ident: pone.0327220.ref022
  article-title: High-resolution sea surface height reconstruction method based on deep learning gradient constraint embedding method
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.120671
– volume: 9
  start-page: 1273
  issue: 2
  year: 2012
  ident: pone.0327220.ref031
  article-title: The CORA dataset: validation and diagnostics of ocean temperature and salinity in situ measurements
  publication-title: Ocean Sci Discussions
– volume: 34
  start-page: 2513
  issue: 14
  year: 2018
  ident: pone.0327220.ref005
  article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty046
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: pone.0327220.ref048
  article-title: Globally and locally consistent image completion
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073659
– year: 2017
  ident: pone.0327220.ref042
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: pone.0327220.ref043
  article-title: Esrgan: Enhanced super-resolution generative adversarial networks
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV) Workshops
– year: 2019
  ident: pone.0327220.ref012
  article-title: DeepSZ: A novel framework to compress deep neural networks by using error-bounded lossy compression
  publication-title: Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing
– volume: 123
  start-page: 8548
  issue: 11
  year: 2018
  ident: pone.0327220.ref003
  article-title: Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region
  publication-title: J Geophysical Res Oceans
  doi: 10.1029/2018JC014196
– year: 2023
  ident: pone.0327220.ref017
  article-title: Hierarchical autoencoder-based lossy compression for large-scale high-resolution scientific data
  publication-title: arXiv preprint
– volume: 118
  start-page: 1906
  issue: 4
  year: 2013
  ident: pone.0327220.ref034
  article-title: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures
  publication-title: JGR Oceans
  doi: 10.1002/jgrc.20164
– volume: 11
  start-page: 1411779
  year: 2024
  ident: pone.0327220.ref027
  article-title: A mesoscale eddy reconstruction method based on generative adversarial networks
  publication-title: Front Marine Sci
  doi: 10.3389/fmars.2024.1411779
– volume: 2
  start-page: 61
  year: 2001
  ident: pone.0327220.ref032
  article-title: Kuroshio and Oyashio currents
  publication-title: Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences
– year: 2017
  ident: pone.0327220.ref051
  article-title: Enhanced deep residual networks for single image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 254
  start-page: 112245
  year: 2021
  ident: pone.0327220.ref004
  article-title: Global chlorophyll distribution induced by mesoscale eddies
  publication-title: Remote Sensing Environ
  doi: 10.1016/j.rse.2020.112245
– year: 2018
  ident: pone.0327220.ref014
  article-title: Weightless: lossy weight encoding for deep neural network compression
  publication-title: International Conference on Machine Learning. PMLR
– year: 2013
  ident: pone.0327220.ref018
  article-title: Data loss and reconstruction in sensor networks
  publication-title: 2013 Proceedings IEEE INFOCOM. IEEE
  doi: 10.1109/INFCOM.2013.6566962
SSID ssj0053866
Score 2.482367
Snippet Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0327220
SubjectTerms Accuracy
Biology and Life Sciences
Compression
Compression ratio
Computer and Information Sciences
Computer applications
Data compression
Data processing
Data transmission
Datasets
Deep learning
Earth Sciences
Engineering and Technology
Learning strategies
Marine machinery
Mesoscale phenomena
Mesoscale vortexes
Methods
Ocean circulation
Oceanic vortices
Oceans
Performance degradation
Physical Sciences
Protection and preservation
Real time
Remote sensing
Research and Analysis Methods
Salinity
Satellites
Sea level
Sea level anomalies
Signal to noise ratio
Vortices
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCC2PhYYBsGIQEP2VLbsZMnVCamgfiQGEPlyXIcZ0wqSVlSTfvvuXPcsKAJ8VJV9TlK78727-zz7wh5zpyFdcHYOM3gQ8D3uJCWxdYB2C6RG8CT-nz8JI9OxPt5Og8bbm1Iq1zPiX6iLhuLe-T73N_RxPDl9fJXjFWj8HQ1lNC4SW4hdRmmdKn5EHDBWJYyXJfjarofrLO3bGq3l3CmGFb5vrIcedb-YW6eLBdNex3w_Dt_8sqCdHiX3AlIks5602-QG67eJBthrLb0ZSCUfnWPfJ_RBcbgF34blJ4NLJwdxYzyPhO2pn0xaQoollam7eixM_QD5hTRWd38NItLiumktMPVDbwD-9wnJ4dvvx4cxaGkQmwhdMBEf4A4jqmkYEWepqnJueTTgoN2Tem4VJwZwFiFFJkEIFExWxUA6RIJYY0speEPyKQG9W0RikdwVSmFq5CTzsg8TUSZSwhslUiFMxGJ15rVy545Q_vjMwURR68ijZbQwRIReYPqH2SR99r_0Jyf6jCMtDAFzCJWuFxATG9YbkoEMVWm8ixxSkXkCRpP95dIh9GrZxnAFJjXWRqRZ14CuS9qTK45Nau21e8-f_sPoeMvI6EXQahqQPXWhAsN8J-QU2skuT2SBBvZUfMWutpaK63-4-vQc-1-1zc_HZrxoZgwV7tm1cvk8GwxjcjD3lsHzWKNcQH9I5KN_Hik-nFLffbDU48jV0-SZvLRv9_rMbnNsE4yUgdn22TSna_cDoC3rtj1I_Q3NWBA2Q
  priority: 102
  providerName: ProQuest
Title A lightweight intelligent compression method for fast Sea Level Anomaly data transmission
URI https://www.ncbi.nlm.nih.gov/pubmed/40824961
https://www.proquest.com/docview/3240696144
https://www.proquest.com/docview/3240912541
https://pubmed.ncbi.nlm.nih.gov/PMC12360586
https://doaj.org/article/4ab051c4e94742a29ad0082f87980e77
http://dx.doi.org/10.1371/journal.pone.0327220
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegvPCCGF8LjGIQEvCQLbUdO3nsppWBYKCNofJkOYkDk0pSkVaI_547240aNAkeeLGi-Byld2ffXXP3O0KeM1uCXTBlnGYwCLiOC1myuLTgbFeIDeBAfd6fypML8XaezrdafWFOmIcH9ow7EKYAvSmFzQVEcYblpkKzVWcqzxKrXB052LxNMOXPYNjFUoZCOa4mB0Eu-8u2sfsJZ4phf-8tQ-Tw-vtTebRctN1VLuefmZNbpmh2m9wKPiSd-nffIddsc4fshF3a0ZcBSvrVXfJlShcYff90f4DSyx5_c0Uxl9znwDbUt5Gm4L_S2nQrem4NfYfZRHTatN_N4hfFRFK6QrsGeoFr7pGL2fGno5M4NFOISwgaMMUfnBvLVFKwIk_T1ORc8knBwaEyleVScWAuZ4UUmQQXomZlXYAzl0gIaGQlDb9PRg2wb5dQ_PhWV1LYGtHojMzTRFS5hJBWiVRYE5F4w1m99JgZ2n04UxBreBZplIQOkojIIbK_p0XEa3cD9EAHPdB_04OIPEHhaV8-2u9bPc3AQYETnaUReeYoEPWiwbSar2bddfrNh8__QHR-NiB6EYjqFlhfmlDKAL8J0bQGlHsDSpBROZjeRVXbcKXT3FUiY5AOKzfqd_X0034aH4qpco1t154mh2eLSUQeeG3tOYvdxQWsj0g20OMB64czzeU3BzqOKD1JmsmH_0NYj8hNhn2UEVo42yOj1Y-1fQzO3aoYk-tqrmDMjiY4zl6PyY3D49OPZ2O3w38D1EZMkg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIm3UcOzkgtDyqXbotEn1oORkncUqlJVmarKr-KX4jM86DBlWISy-raD12kvF4HvH4G0KeM5OAXdCJG4Tww-HajUXC3MSAs50iNoAF9dndE-ND_mkWzFbIr_YsDKZVtjrRKuq0SPAb-ZZvz2hi-PJ28dPFqlG4u9qW0KjFYsecn0HIVr6ZfID5fcHY9seD92O3qSrgJuA9Y647WHnDpBezOAqCQEe-8IexDzfQqfGF9JkGNyMWPBRgSzOWZDF4NZ4Az16kQvsw7jVyHQyvhytKzroAD3SHEM3xPF8Otxpp2FwUudn0fCYZVhW_YP5slYDOFgwW86K8zNH9O1_zggHcvk1uNZ4rHdWitkpWTH6HrDa6oaSvGgDr13fJ1xGdY8x_Zj-70pMO9bOimMFeZ97mtC5eTcFrppkuK7pvNJ1iDhMd5cUPPT-nmL5KK7SmII3Y5x45vBJm3yeDHNi3Rihu-WWp4CZDDDwtosDjaSQgkJY84EY7xG05qxY1Uoey23USIpyaRQpnQjUz4ZB3yP6OFnG27R_F6bFqlq3iOgatlXATccnhUSOdotOUhTIKPSOlQzZw8lR9aLXTFmoUglsEdoQFDnlmKRBrI8dknmO9LEs1-Xz0H0T7X3pELxuirADWJ7o5QAHvhBhePcr1HiXMUdJrXkNRa7lSqj9rC3q24nd589OuGQfFBL3cFMuaJoKx-dAhD2pp7TiLNc059HdI2JPjHuv7LfnJdwt1jthAXhCKh_9-rg1yY3ywO1XTyd7OI3KTYY1mhC0O18mgOl2ax-A4VvETu1op-XbV6uE33g557g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGAGgYCHrKnj2MkDQoVRrWwMxDZUnoyTOGNSScqSatq_xl_HXeKEBU2Il71UUX12kvP5PuLz7wh5ykwCdkEnbhDCD4drNxYJcxMDznaK2AA1qM-HPbF9yN_PgtkK-dWehcG0ylYn1oo6LRL8Rj706zOaGL4MM5sW8Wlr8nrx08UKUrjT2pbTaERkx5ydQvhWvppuwVw_Y2zy7uDttmsrDLgJeNKY9w4W3zDpxSyOgiDQkS_8UezDzXRqfCF9psHliAUPBdjVjCVZDB6OJ8DLF6nQPox7hVyVfjDCNSZnXbAHekQIe1TPl6OhlYzNRZGbTc9nkmGF8XOmsK4Y0NmFwWJelBc5vX_nbp4zhpOb5Ib1Yum4EbtVsmLyW2TV6omSvrBg1i9vk69jOsf4_7T-BEuPOwTQimI2e5OFm9OmkDUFD5pmuqzovtF0F_OZ6Dgvfuj5GcVUVlqhZQXJxD53yOGlMPsuGeTAvjVCcfsvSwU3GeLhaREFHk8jAUG15AE32iFuy1m1aFA7VL11JyHaaVikcCaUnQmHvEH2d7SIuV3_UZwcKbuEFdcxaLCEm4hLDo8a6RQdqCyUUegZKR2ygZOnmgOsneZQ4xBcJLApLHDIk5oCcTdylOAjvSxLNf345T-I9j_3iJ5boqwA1ifaHqaAd0I8rx7leo8S5ijpNa-hqLVcKdWfdQY9W_G7uPlx14yDYrJeboplQxPB2HzkkHuNtHacxfrmHPo7JOzJcY_1_Zb8-HsNe444QV4Qivv_fq4Ncg0Ug9qd7u08INcZlmtGBONwnQyqk6V5CD5kFT-qFysl3y5bO_wG5EZ-JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+intelligent+compression+method+for+fast+Sea+Level+Anomaly+data+transmission&rft.jtitle=PloS+one&rft.au=Ma%2C+Xiaodong&rft.au=Wan%2C+Xiang&rft.au=Zhang%2C+Lei&rft.au=Wang%2C+Dong&rft.date=2025-08-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=8&rft.spage=e0327220&rft_id=info:doi/10.1371%2Fjournal.pone.0327220&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon