A lightweight intelligent compression method for fast Sea Level Anomaly data transmission

Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 8; p. e0327220
Main Authors Ma, Xiaodong, Wan, Xiang, Zhang, Lei, Wang, Dong, Dai, Zeyuan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.08.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Traditional compression methods struggle to preserve critical mesoscale ocean features like vortices during bandwidth-constrained marine data transmission. To aaddress this limitation, we propose CompressGAN, a novel deep learning framework that transcends conventional approaches reliant on generic image metrics (e.g., peak signal-to-noise ratio, PSNR; structural similarity index, SSIM). The architecture integrates global-local dual discriminators to enforce spatiotemporal coherence of mesoscale vortices, employs dilated convolutions to enhance feature receptive fields without computational overhead, and incorporates vortex recognition rate as a physics-aware evaluation metric. Furthermore, parametric pruning and adaptive quantization strategies are embedded to optimize memory efficiency for shipborne hardware constraints. Validation across multiple ocean reanalysis datasets demonstrates CompressGAN’s superiority at 4 × compression ratios, achieving 91.46% mesoscale eddy identification accuracy (Iden) versus SRGAN (89.71%) and SRResNet (89.82%), while maintaining operational efficiency (148 s/image inference time, 25 GB peak memory). Generalization tests reveal controlled performance degradation: PSNR reduced by 4.2 ± 0.3 dB, SSIM by 0.7126, and Iden by 4.1%, confirming robustness under marine operational scenarios. This work resolves the critical trade-off between vessel-mounted computational limits and real-time ocean data demands, providing a viable pathway for integrated shipboard systems to reconcile multimodal marine data processing with navigation service requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0327220