Cell types to order: temporal specification of CNS stem cells

Spatial and temporal specification of neural progenitor cells is integral to their production of a wide variety of central nervous system (CNS) cells. For a given region, cells arise on a precise and predictable temporal schedule, with sub-types of neurons appearing in a defined order, followed by g...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in neurobiology Vol. 19; no. 2; pp. 112 - 119
Main Authors Okano, Hideyuki, Temple, Sally
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spatial and temporal specification of neural progenitor cells is integral to their production of a wide variety of central nervous system (CNS) cells. For a given region, cells arise on a precise and predictable temporal schedule, with sub-types of neurons appearing in a defined order, followed by glial cell generation. Single cell studies have shown that the timing of cell generation can be encoded within individual early progenitor cells as a cell-intrinsic program. Environmental cues are important modulators of this program, allowing it to unfold and coordinating the process within the embryo. Here we review recent findings on the molecular mechanisms of epigenetic and transcription factor regulation, which are involved in temporal specification of CNS stem cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0959-4388
1873-6882
1873-6882
DOI:10.1016/j.conb.2009.04.003