Hepatic alterations during the development and progression of cancer cachexia

Cancer-associated bodyweight loss (cachexia) is a hallmark of many cancers and is associated with decreased quality of life and increased mortality. Hepatic function can dramatically influence whole-body energy expenditure and may therefore significantly influence whole-body health during cancer pro...

Full description

Saved in:
Bibliographic Details
Published inApplied physiology, nutrition, and metabolism Vol. 45; no. 5; pp. 500 - 512
Main Authors Rosa-Caldwell, Megan E, Brown, Jacob L, Lee, David E, Wiggs, Michael P, Perry Jr, Richard A, Haynie, Wesley S, Caldwell, Aaron R, Washington, Tyrone A, Lo, Wen-Juo, Greene, Nicholas P
Format Journal Article
LanguageEnglish
Published 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 NRC Research Press 01.05.2020
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer-associated bodyweight loss (cachexia) is a hallmark of many cancers and is associated with decreased quality of life and increased mortality. Hepatic function can dramatically influence whole-body energy expenditure and may therefore significantly influence whole-body health during cancer progression. The purpose of this study was to examine alterations in markers of hepatic metabolism and physiology during cachexia progression. Male C57BL/6J mice were injected with 1 × 10 6 Lewis Lung Carcinoma cells dissolved in 100 μL PBS and cancer was allowed to develop for 1, 2, 3, or 4 weeks. Control animals were injected with an equal volume of phosphate-buffered saline. Livers were analyzed for measures of metabolism, collagen deposition, protein turnover, and mitochondrial quality. Animals at 4 weeks had ∼30% larger livers compared with all other groups. Cancer progression was associated with altered regulators of fat metabolism. Additionally, longer duration of cancer development was associated with ∼3-fold increased regulators of collagen deposition as well as phenotypic collagen content, suggesting increased liver fibrosis. Mitochondrial quality control regulators appeared to be altered before any phenotypic alterations to collagen deposition. While induction of Akt was noted, downstream markers of protein synthesis were not altered. In conclusions, cancer cachexia progression is associated with hepatic pathologies, specifically liver fibrosis. Alterations to mitochondrial quality control mechanisms appear to precede this fibrotic phenotype, potentially suggesting mitochondrial mechanisms for the development of hepatic pathologies during the development and progression of cancer cachexia. Novelty Cachexia progression results in liver collagen deposition and fibrosis. Alterations in mitochondrial quality control may precede liver pathologies during cachexia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1715-5312
1715-5320
DOI:10.1139/apnm-2019-0407