A Knowledge-Based Approach to Automatic Detection of Equipment Alarm Sounds in a Neonatal Intensive Care Unit Environment

A large number of alarm sounds triggered by biomedical equipment occur frequently in the noisy environment of a neonatal intensive care unit (NICU) and play a key role in providing healthcare. In this paper, our work on the development of an automatic system for detection of acoustic alarms in that...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of translational engineering in health and medicine Vol. 6; pp. 1 - 10
Main Authors Raboshchuk, Ganna, Nadeu, Climent, Jancovic, Peter, Lilja, Alex Peiró, KöKüEr, MüNevver, Muñoz Mahamud, Blanca, De Veciana, Ana Riverola
Format Journal Article Publication
LanguageEnglish
Published United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A large number of alarm sounds triggered by biomedical equipment occur frequently in the noisy environment of a neonatal intensive care unit (NICU) and play a key role in providing healthcare. In this paper, our work on the development of an automatic system for detection of acoustic alarms in that difficult environment is presented. Such automatic detection system is needed for the investigation of how a preterm infant reacts to auditory stimuli of the NICU environment and for an improved real-time patient monitoring. The approach presented in this paper consists of using the available knowledge about each alarm class in the design of the detection system. The information about the frequency structure is used in the feature extraction stage, and the time structure knowledge is incorporated at the post-processing stage. Several alternative methods are compared for feature extraction, modeling, and post-processing. The detection performance is evaluated with real data recorded in the NICU of the hospital, and by using both frame-level and period-level metrics. The experimental results show that the inclusion of both spectral and temporal information allows to improve the baseline detection performance by more than 60%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2372
2168-2372
DOI:10.1109/JTEHM.2017.2781224