Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency?

Chronic atmospheric N deposition has modified relative N availability, altering the biogeochemical cycles of forests and the stoichiometry of nutrients in trees, inducing P limitation, and modifying the N:P ratios of plant biomass. This study examines how the variation in the foliar stoichiometry of...

Full description

Saved in:
Bibliographic Details
Published inOecologia Vol. 171; no. 4; pp. 797 - 808
Main Authors Blanes, Ma Carmen, Viñegla, Benjamín, Merino, José, Carreira, José A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer 01.04.2013
Springer-Verlag
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronic atmospheric N deposition has modified relative N availability, altering the biogeochemical cycles of forests and the stoichiometry of nutrients in trees, inducing P limitation, and modifying the N:P ratios of plant biomass. This study examines how the variation in the foliar stoichiometry of Abies pinsapo across an N deposition gradient affects foliar traits and photosynthetic rate. We measured the maximum net assimilation rates (A max ) and the foliar nitrogen (N) and phosphorus (P) concentrations in A. pinsapo needles of five age classes. The leaf mass per area and photosynthetic N and P use efficiencies (PNUE and PPUE, respectively) were also estimated. The results from the N-saturated stand (Sierra Bermeja, B) differed from the comparable N-limited stands under investigation (Yunquera, Y, and Sierra Real, SR). The trees from Y and SR exhibited a reduction in the N content in older needles, whereas the foliar N concentration at the B site increased with needle age. N and P were positively correlated at Y and SR, but not at B, suggesting that the overload of N in the trees at site B has exceeded the homeostatic regulation capacity of the N-saturated stand in terms of foliar stoichiometry. A max and PNUE were correlated positively with P and negatively with the N/P ratio at the three study sites. The foliar N concentration was positively correlated with A max at Y and SR. However, this relationship was negative for the B site. These findings suggest that the nutritional imbalance caused by increased chronic deposition of N and an insufficient supply of P counteracts the potential increase in net photosynthesis induced by the accumulation of foliar N.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-012-2454-1