State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives

The detrimental effects of hardening in asphalt pavements were first recognized by pioneering pavement engineers in the 1900s and have been studied extensively during the last 70 years. This hardening process, referred to as asphalt aging, is generally defined as change in the rheological properties...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Civil Engineering Vol. 2018; no. 2018; pp. 1 - 18
Main Authors Sirin, Okan, Kassem, Emad, Paul, Dalim K.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The detrimental effects of hardening in asphalt pavements were first recognized by pioneering pavement engineers in the 1900s and have been studied extensively during the last 70 years. This hardening process, referred to as asphalt aging, is generally defined as change in the rheological properties of asphalt binders/mixtures due to changes in chemical composition during construction and its service life period. Aging causes the asphalt material to stiffen and embrittle, which affects the durability and leads to a high potential for cracking. This paper presents the state of the art on asphalt and asphalt mixture aging and use of antioxidant additives to retard the aging. A picture of complex molecular structure of asphalt and its changes due to atmospheric condition and various protocols used to simulate aging in laboratory environment are also discussed. Emphasis is given on recent studies on simulation of aging of asphalt mixtures as there has been limited research on mixtures compared to the asphalt binder. Finally, this paper presents the application of antiaging techniques and its mechanism, use of various types of antioxidant additives to retard aging of asphalt and, hence, improve the performance of asphalt pavements.
ISSN:1687-8086
1687-8094
DOI:10.1155/2018/3428961