Fatty Acid Competition as a Mechanism by Which Enterobacter cloacae Suppresses Pythium ultimum Sporangium Germination and Damping-Off
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 66; no. 12; pp. 5340 - 5347 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.12.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
AEM
About
AEM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AEM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0099-2240
Online ISSN:
1098-5336
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AEM
.asm.org, visit:
AEM
|
---|---|
AbstractList | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
AEM
About
AEM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AEM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0099-2240
Online ISSN:
1098-5336
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AEM
.asm.org, visit:
AEM
Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum , results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum , we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 ( fadB ) and EcL1 ( fadL ), were reduced in β-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum -incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections.Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and dvelopment. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of Ecloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta -oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. |
Author | Eric B. Nelson Karin van Dijk |
AuthorAffiliation | Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203 |
AuthorAffiliation_xml | – name: Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203 |
Author_xml | – sequence: 1 givenname: Karin surname: van Dijk fullname: van Dijk, Karin organization: Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203 – sequence: 2 givenname: Eric B. surname: Nelson fullname: Nelson, Eric B. organization: Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=851092$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11097912$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt2O1CAUx4lZ437oKxiiiXcdgdKWJsZkMs6uJrtZk9V4SSilUzYFKlDNPIDvLd0ZJ-vezA0HDr_zh_NxDk6sswoAiNECY8LeL9c3i7JcYLIocoqytFQLghB6Bs4wqlly5OUJOEOorjNCKDoF5yHcJ4Cikr0ApzhRVY3JGfhzKWLcwqXULVw5M6qoo3YWigAFvFGyF1YHA5st_NFr2cO1jcq7RshkoByckELBu2kcvQpBBfh1G3s9GTgNUZtk70bnhd3MrivljbZiJ29b-EmYUdtNdtt1L8HzTgxBvdrbC_D9cv1t9Tm7vr36slpeZ7IoWMxox4q6qxku6rxpVFMxJOt0RAq1lFCatrJQiHUNUwzRoiGywlXLcMdkSyuRX4APO91xaoxqpbLRi4GPXhvht9wJzf-_sbrnG_eL14SWZQp_tw_37uekQuRGB6mGQVjlpsArQnOGCDoK0prkFaXHQVyxvMT5_PSbJ-C9m7xNxeIEFXWRowe114_TO-T1r90JeLsHRJBi6FJrpA4HjhUJnKmPO0p6F4JXHZc6PvQt1UQPHCM-TyFPU8jLkmPC5ymcl4rPU5gE2BOBw0-Oh-7z7PWm_6294iIYLpR5hOd_AcCV7bg |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1007_s11104_018_3780_9 crossref_primary_10_1016_j_apsoil_2013_05_017 crossref_primary_10_3390_microbiolres14020049 crossref_primary_10_1094_PHYTO_08_11_0240_R crossref_primary_10_1094_PHYTO_98_9_1012 crossref_primary_10_1264_jsme2_23_134 crossref_primary_10_3748_wjg_v11_i39_6152 crossref_primary_10_1007_s10327_009_0169_x crossref_primary_10_1016_j_tim_2022_10_009 crossref_primary_10_1016_j_soilbio_2020_108016 crossref_primary_10_1016_j_tplants_2024_09_004 crossref_primary_10_1146_annurev_phyto_42_121603_131041 crossref_primary_10_1128_AEM_00264_08 crossref_primary_10_1128_AEM_69_1_452_460_2003 crossref_primary_10_1007_s11104_010_0615_8 crossref_primary_10_1007_s11104_017_3289_7 crossref_primary_10_7585_kjps_2012_16_2_178 crossref_primary_10_1016_j_biocontrol_2012_07_012 crossref_primary_10_1186_s40168_017_0273_7 crossref_primary_10_1007_s00253_011_3684_6 crossref_primary_10_1007_s00203_021_02320_8 crossref_primary_10_4489_KJM_2014_42_4_333 crossref_primary_10_1371_journal_ppat_1006028 crossref_primary_10_1007_s11104_010_0338_x crossref_primary_10_1078_0944_5013_00185 crossref_primary_10_1016_j_soilbio_2009_01_010 crossref_primary_10_1007_s11104_008_9568_6 crossref_primary_10_3390_su13010010 crossref_primary_10_3389_fmicb_2023_1280258 crossref_primary_10_1007_s10482_016_0758_6 crossref_primary_10_1080_1065657X_2015_1087894 crossref_primary_10_1088_1755_1315_308_1_012025 crossref_primary_10_1111_jam_12946 crossref_primary_10_1094_PHYTO_08_11_0241 crossref_primary_10_1126_science_1201618 crossref_primary_10_1007_s11274_025_04253_6 crossref_primary_10_1016_j_pmpp_2005_06_003 crossref_primary_10_1007_s00284_019_01725_5 crossref_primary_10_1128_AEM_00263_08 crossref_primary_10_1128_AEM_69_2_1114_1120_2003 crossref_primary_10_1007_s13593_017_0417_y crossref_primary_10_1128_MMBR_67_3_454_472_2003 crossref_primary_10_1080_07352689_2022_2031728 crossref_primary_10_3390_plants10122697 crossref_primary_10_1128_spectrum_00377_23 crossref_primary_10_1007_s12230_020_09795_z crossref_primary_10_1371_journal_pone_0074487 |
Cites_doi | 10.1016/S0021-9258(17)39750-8 10.1016/S0065-2296(08)60119-6 10.1094/Phyto-77-1057 10.1016/S0022-2836(83)80284-8 10.1080/09583159409355336 10.1007/BF00011692 10.1016/S0038-0717(97)00106-5 10.1094/Phyto-61-357 10.1146/annurev.phyto.36.1.453 10.1016/S0021-9258(18)89661-2 10.1128/aem.59.12.4189-4197.1993 10.1016/S0021-9258(18)34188-7 10.1016/0378-1119(84)90135-5 10.2307/3870235 10.1007/s002489900097 10.1139/b95-389 10.1016/0005-2760(94)90113-9 10.1128/JB.170.6.2575-2583.1988 10.1139/m92-185 10.1007/978-1-4757-0064-0 10.1007/BF01974309 10.1073/pnas.85.17.6468 10.1094/Phyto-78-1075 10.1016/S0031-9422(97)00265-3 10.1128/jb.171.7.3831-3839.1989 10.1094/Phyto-78-1246 10.1073/pnas.92.10.4197 10.1111/j.1432-1033.1971.tb01334.x 10.1016/0378-1119(85)90120-9 10.1080/07352689991309216 10.1094/Phyto-77-190 10.1128/JB.172.11.6557-6567.1990 10.1094/MPMI-4-005 10.1094/Phyto-84-677 10.1094/PD-72-0140 10.1094/Phyto-76-327 10.1094/Phyto-61-165 10.1016/0378-1119(91)90366-J 10.1128/aem.59.1.74-82.1993 10.1094/Phyto-82-652 10.1094/Phyto-73-1322 10.1094/PD-73-0021 10.1128/JB.172.11.6568-6572.1990 10.1016/S0021-9258(18)64849-5 10.1128/jb.164.1.51-56.1985 10.1094/Phyto-84-1331 10.1094/Phyto-61-157 10.1073/pnas.76.4.1648 10.1094/Phyto-78-520 |
ContentType | Journal Article |
Copyright | 2001 INIST-CNRS Copyright American Society for Microbiology Dec 2000 Copyright © 2000, American Society for Microbiology 2000 |
Copyright_xml | – notice: 2001 INIST-CNRS – notice: Copyright American Society for Microbiology Dec 2000 – notice: Copyright © 2000, American Society for Microbiology 2000 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.66.12.5340-5347.2000 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
EndPage | 5347 |
ExternalDocumentID | PMC92466 72012458 11097912 851092 10_1128_AEM_66_12_5340_5347_2000 aem_66_12_5340 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH ADXHL AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM IQODW ABTAH CGR CUY CVF ECM EIF NPM OK1 PKN RHF UCJ Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c558t-4f859f981593bbeb780c99810e0d4244981c5e08fb8e8045b2c717d81f8cd47a3 |
ISSN | 0099-2240 |
IngestDate | Thu Aug 21 14:05:12 EDT 2025 Fri Jul 11 08:12:15 EDT 2025 Fri Jul 11 10:18:44 EDT 2025 Thu Jul 10 22:34:31 EDT 2025 Mon Jun 30 08:34:01 EDT 2025 Wed Feb 19 02:32:13 EST 2025 Mon Jul 21 09:15:36 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Tue Jul 01 00:45:57 EDT 2025 Wed May 18 15:27:29 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Competition Microorganism interrelationships Enterobacter cloacae Germination Biological control Suppression Phycomycetes Sporangium Metabolism Fatty acids Linoleic acid Fungi Pythium ultimum Bacteria Enterobacteriaceae Thallophyta |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-4f859f981593bbeb780c99810e0d4244981c5e08fb8e8045b2c717d81f8cd47a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Present address: Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0665. Corresponding author. Mailing address: Department of Plant Pathology, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853-4203. Phone: (607) 255-7841. Fax: (607) 255-4471. E-mail: ebn1@cornell.edu. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/92466 |
PMID | 11097912 |
PQID | 205953040 |
PQPubID | 42251 |
PageCount | 8 |
ParticipantIDs | highwire_asm_aem_66_12_5340 proquest_miscellaneous_49237440 proquest_miscellaneous_17836136 pascalfrancis_primary_851092 pubmed_primary_11097912 proquest_journals_205953040 proquest_miscellaneous_72438020 pubmedcentral_primary_oai_pubmedcentral_nih_gov_92466 crossref_citationtrail_10_1128_AEM_66_12_5340_5347_2000 crossref_primary_10_1128_AEM_66_12_5340_5347_2000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-12-01 |
PublicationDateYYYYMMDD | 2000-12-01 |
PublicationDate_xml | – month: 12 year: 2000 text: 2000-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2000 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Stanghellini M. E. (e_1_3_2_50_2) 1974; 1 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 Singleton L. L. (e_1_3_2_49_2) 1986; 76 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Hendrix J. W. (e_1_3_2_20_2) 1974; 1 |
References_xml | – ident: e_1_3_2_15_2 doi: 10.1016/S0021-9258(17)39750-8 – ident: e_1_3_2_58_2 doi: 10.1016/S0065-2296(08)60119-6 – ident: e_1_3_2_48_2 doi: 10.1094/Phyto-77-1057 – ident: e_1_3_2_43_2 – ident: e_1_3_2_17_2 doi: 10.1016/S0022-2836(83)80284-8 – ident: e_1_3_2_9_2 doi: 10.1080/09583159409355336 – ident: e_1_3_2_38_2 doi: 10.1007/BF00011692 – ident: e_1_3_2_54_2 doi: 10.1016/S0038-0717(97)00106-5 – ident: e_1_3_2_36_2 doi: 10.1094/Phyto-61-357 – ident: e_1_3_2_55_2 doi: 10.1146/annurev.phyto.36.1.453 – volume: 76 start-page: 1143 year: 1986 ident: e_1_3_2_49_2 article-title: Storage of Pythium species on a wheat leaf: water medium publication-title: Phytopathology – ident: e_1_3_2_34_2 – ident: e_1_3_2_3_2 doi: 10.1016/S0021-9258(18)89661-2 – ident: e_1_3_2_31_2 doi: 10.1128/aem.59.12.4189-4197.1993 – ident: e_1_3_2_29_2 doi: 10.1016/S0021-9258(18)34188-7 – ident: e_1_3_2_7_2 doi: 10.1016/0378-1119(84)90135-5 – ident: e_1_3_2_18_2 doi: 10.2307/3870235 – ident: e_1_3_2_22_2 doi: 10.1007/s002489900097 – ident: e_1_3_2_25_2 doi: 10.1139/b95-389 – ident: e_1_3_2_47_2 – ident: e_1_3_2_2_2 doi: 10.1016/0005-2760(94)90113-9 – ident: e_1_3_2_35_2 doi: 10.1128/JB.170.6.2575-2583.1988 – ident: e_1_3_2_44_2 doi: 10.1139/m92-185 – ident: e_1_3_2_57_2 doi: 10.1007/978-1-4757-0064-0 – ident: e_1_3_2_10_2 doi: 10.1007/BF01974309 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.85.17.6468 – ident: e_1_3_2_23_2 doi: 10.1094/Phyto-78-1075 – volume: 1 start-page: 211 year: 1974 ident: e_1_3_2_50_2 article-title: Spore germination, growth, and survival of Pythium in soil publication-title: Proc. Am. Phytopathol. Soc. – ident: e_1_3_2_46_2 doi: 10.1016/S0031-9422(97)00265-3 – ident: e_1_3_2_26_2 doi: 10.1128/jb.171.7.3831-3839.1989 – ident: e_1_3_2_41_2 doi: 10.1094/Phyto-78-1246 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.92.10.4197 – ident: e_1_3_2_27_2 doi: 10.1111/j.1432-1033.1971.tb01334.x – ident: e_1_3_2_59_2 doi: 10.1016/0378-1119(85)90120-9 – ident: e_1_3_2_33_2 doi: 10.1080/07352689991309216 – ident: e_1_3_2_4_2 – ident: e_1_3_2_11_2 doi: 10.1094/Phyto-77-190 – ident: e_1_3_2_21_2 doi: 10.1128/JB.172.11.6557-6567.1990 – ident: e_1_3_2_30_2 doi: 10.1094/MPMI-4-005 – ident: e_1_3_2_40_2 doi: 10.1094/Phyto-84-677 – ident: e_1_3_2_37_2 doi: 10.1094/PD-72-0140 – ident: e_1_3_2_39_2 doi: 10.1094/Phyto-76-327 – ident: e_1_3_2_51_2 doi: 10.1094/Phyto-61-165 – ident: e_1_3_2_56_2 doi: 10.1016/0378-1119(91)90366-J – ident: e_1_3_2_28_2 doi: 10.1128/aem.59.1.74-82.1993 – ident: e_1_3_2_53_2 doi: 10.1094/Phyto-82-652 – ident: e_1_3_2_16_2 doi: 10.1094/Phyto-73-1322 – ident: e_1_3_2_42_2 doi: 10.1094/PD-73-0021 – ident: e_1_3_2_8_2 doi: 10.1128/JB.172.11.6568-6572.1990 – ident: e_1_3_2_13_2 doi: 10.1016/S0021-9258(18)64849-5 – ident: e_1_3_2_45_2 doi: 10.1128/jb.164.1.51-56.1985 – ident: e_1_3_2_14_2 doi: 10.1094/Phyto-84-1331 – ident: e_1_3_2_24_2 – ident: e_1_3_2_52_2 doi: 10.1094/Phyto-61-157 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.76.4.1648 – ident: e_1_3_2_32_2 – ident: e_1_3_2_19_2 doi: 10.1094/Phyto-78-520 – volume: 1 start-page: 207 year: 1974 ident: e_1_3_2_20_2 article-title: Physiology and biochemistry of growth and reproduction in Pythium. publication-title: Proc. Am. Phytopathol. Soc. |
SSID | ssj0004068 |
Score | 1.9063551 |
Snippet | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While... Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and dvelopment. While... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5340 |
SubjectTerms | Bacteria Bacteriology Base Sequence Biological and medical sciences Biological control Control Disease DNA Primers DNA Primers - genetics Enterobacter cloacae Enterobacter cloacae - genetics Enterobacter cloacae - growth & development Enterobacter cloacae - physiology Fatty Acids Fatty Acids - metabolism Fundamental and applied biological sciences. Psychology fungal diseases of plants Fungal plant pathogens genes Genes, Bacterial genetics Germination Gossypium Gossypium - growth & development Gossypium - metabolism Gossypium - microbiology Gossypium hirsutum growth & development interspecific competition linoleic acid Linoleic Acid - metabolism lipid metabolism metabolism Microbiology Microorganisms Mutation nucleotide sequences pathogenicity Pathogenicity, virulence, toxins, bacteriocins, pyrogens, host-bacteria relations, miscellaneous strains physiology Phytopathology. Animal pests. Plant and forest protection Plant Diseases Plant Diseases - microbiology Plant growth Plant Microbiology Pythium Pythium - pathogenicity Pythium ultimum seed germination seeds sporangia |
Title | Fatty Acid Competition as a Mechanism by Which Enterobacter cloacae Suppresses Pythium ultimum Sporangium Germination and Damping-Off |
URI | http://aem.asm.org/content/66/12/5340.abstract https://www.ncbi.nlm.nih.gov/pubmed/11097912 https://www.proquest.com/docview/205953040 https://www.proquest.com/docview/17836136 https://www.proquest.com/docview/49237440 https://www.proquest.com/docview/72438020 https://pubmed.ncbi.nlm.nih.gov/PMC92466 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nc9MwENWEMgxwYCBQCCmgAzePiy1HtnwMkFJgAhzaoTePrMgkTON0sHMId_4cv4pdf8pNwxQujmNLip19Wu3au28JeRlw6SVKcNsFz9qG9VbYUgfKjn18raS1GnFMFJ5-8o9PRx_O-Fmv99uIWlrn8aH6eWVeyf9IFY6BXDFL9h8k2wwKB2Af5AtbkDBsryXjI5mDDT1Wi1kxr3VJPISlY6Q11ZjTiyUwwMD8Ol-ouVUEAMD8RX5mS52vpJLawrKeBYF4Zn3Z5PPFemlhjOESPrECuky_4aF3ZcxM3gQvyyUmWtmfk8Q0b2ubFptM2hQ6zP9dtIxPjZIHPz0tCge_XXxvMoZQM1uvD0H9IpFk56nEVoRH_brJjD3d-qVKJ4ehjYZFuSKVahhZTsEQ9U09XVZnqfHIDK3LvbL39nLAMMVhPJke-j4-9cWGMO4oKDKUzC4g2ItlAROkYA3CavwOP_eldbOJZpR6Gfl-5LIIx79BbjJwWQr3_v3HNkfX8UXNiIp3W0eVMfFq1_UhoW11MV2rqWayxkBemcFcTsoiLFd5SZeDfQ3r6eQ-uVe5PXRcYvgB6em0T26VhVA3fXK7zo_P-uSuQZH5kPwqME4R49TAOJUZlbTBOI03tMA4NTFOK4zTFuO0wjitME5bjFMD4xQATA2MPyKnR5OTN8d2VTrEVpyL3B4lgodJKMBY9-JYx4FwVAhfHe3MMLUTdhXXjkhioQV4NTFTgRvMhJtgMa9AevtkL12l-gmhyp15ySycOUqxkfICHIYzL3Q0c-OEswEJatFEquLVx_Iu51HhXzMRgXwNfOAmwOqvzoC4Tc-LklvmGn2GtfQjmS2jLvYG5KADiGZY8KucEC51WOMjqtRYBqPykHsOdn7RnIU1Bl8cylSv1lnkYqqX6_m7WyDNI1KN7m4RMKxtwaDF4xKP7S1XGB8Q3kFq0wAZ8Ltn0sW8YMIP2cj3n_71LxmSO61-OiB7-Y-1fgZ-RB4_LyboH9BbHJM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+Acid+Competition+as+a+Mechanism+by+Which+Enterobacter+cloacae+Suppresses+Pythium+ultimum+Sporangium+Germination+and+Damping-Off&rft.jtitle=Applied+and+Environmental+Microbiology&rft.au=Karin+van+Dijk&rft.au=Eric+B.+Nelson&rft.date=2000-12-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=66&rft.issue=12&rft.spage=5340&rft_id=info:doi/10.1128%2FAEM.66.12.5340-5347.2000&rft_id=info%3Apmid%2F11097912&rft.externalDBID=n%2Fa&rft.externalDocID=aem_66_12_5340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |