Lidocaine inhibits vascular endothelial growth factor-A-induced angiogenesis
Purpose Angiogenesis is closely related to the pathophysiology of diseases such as cancer or ischemia. Here, we investigated the effect of lidocaine at clinically effective blood concentrations on vascular endothelial growth factor A (VEGF-A)-induced angiogenesis. In addition, we aimed to clarify th...
Saved in:
Published in | Journal of anesthesia Vol. 34; no. 6; pp. 857 - 864 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2020
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
Angiogenesis is closely related to the pathophysiology of diseases such as cancer or ischemia. Here, we investigated the effect of lidocaine at clinically effective blood concentrations on vascular endothelial growth factor A (VEGF-A)-induced angiogenesis. In addition, we aimed to clarify the mechanisms by which lidocaine could inhibit angiogenesis.
Methods
Angiogenesis was analyzed using commercially available in vitro assay kits in human umbilical vein endothelial cells (HUVECs)/normal human dermal fibroblast co-culture systems. The effects of lidocaine on cytotoxicity, VEGF-induced cell migration, and VEGF-induced cell proliferation were examined in HUVECs using lactate dehydrogenase cytotoxic, Boyden chamber, and WST-8 assays, respectively. The VEGF signaling pathway via VEGF receptor 2 (VEGFR-2) was analyzed by western blotting.
Results
Lidocaine elicited a significant dose-dependent, angiogenesis-inhibitory effect at a concentration range of 1–10 μg/ml. At this concentration range, cell death was not observed. Lidocaine, at a concentration of 10 μg/ml, significantly inhibited cell proliferation but not cell migration, induced by VEGF-A in HUVECs. Furthermore, lidocaine, in a dose-dependent manner, significantly inhibited the VEGF-A-induced phosphorylation of VEGFR-2 at 3 and 10 μg/ml.
Conclusion
We demonstrated that lidocaine has an anti-angiogenesis effect on clinically effective blood concentrations without causing cell death. This finding could represent a new avenue for future research into anesthesia, cancer-related analgesia, and revascularization therapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0913-8668 1438-8359 |
DOI: | 10.1007/s00540-020-02830-7 |