Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells

The hypothesis of cancer stem cells has been proposed to explain the therapeutic failure in a variety of cancers including lung cancers. Previously, we demonstrated acquisition of epithelial–mesenchymal transition, a feature highly reminiscent of cancer stem-like cells, in gefitinib-resistant A549 c...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 32; no. 2; pp. 209 - 221
Main Authors Jung, M-J, Rho, J-K, Kim, Y-M, Jung, J E, Jin, Y B, Ko, Y-G, Lee, J-S, Lee, S-J, Lee, J C, Park, M-J
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.01.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The hypothesis of cancer stem cells has been proposed to explain the therapeutic failure in a variety of cancers including lung cancers. Previously, we demonstrated acquisition of epithelial–mesenchymal transition, a feature highly reminiscent of cancer stem-like cells, in gefitinib-resistant A549 cells (A549/GR). Here, we show that A549/GR cells contain a high proportion of CXCR4+ cells that are responsible for having high potential of self-renewal activity in vitro and tumorigenicity in vivo . A549/GR cells exhibited strong sphere-forming activity and high CXCR4 expression and SDF-1α secretion compared with parent cells. Pharmacological inhibition (AMD3100) and/or siRNA transfection targeting CXCR4 significantly suppressed sphere-forming activity in A549 and A549/GR cells, and in various non-small cell lung cancer (NSCLC) cell lines. A549/GR cells showed enhanced Akt, mTOR and STAT3 (Y705) phosphorylation. Pharmacological inhibition of phosphatidyl inositol 3-kinase or transfection with wild-type PTEN suppressed phosphorylation of Akt, mTOR and STAT3 (Y705), sphere formation, and CXCR4 expression in A549/GR cells, whereas mutant PTEN enhanced these events. Inhibition of STAT3 by WP1066 or siSTAT3 significantly suppressed the sphere formation, but not CXCR4 expression, indicating that STAT3 is a downstream effector of CXCR4-mediated signaling. FACS-sorted CXCR4+ A549/GR cells formed many large spheres, had self-renewal capacity, demonstrated radiation resistance in vitro and exhibited stronger tumorigenic potential in vivo than CXCR4− cells. Lentiviral-transduction of CXCR4 enhanced sphere formation and tumorigenicity in H460 and A549 cells, whereas introduction of siCXCR4 suppressed these activities in A549/GR cells. Our data indicate that CXCR4+ NSCLC cells are strong candidates for tumorigenic stem-like cancer cells that maintain stemness through a CXCR4-medated STAT3 pathway and provide a potential therapeutic target for eliminating these malignant cells in NSCLC.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2012.37