AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding

HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 114; no. 6; pp. 689 - 699
Main Authors Strack, Bettina, Calistri, Arianna, Craig, Stewart, Popova, Elena, Göttlinger, Heinrich G
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain function. These observations identify AIP1 as a component of the viral budding machinery, which serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0092-8674
1097-4172
DOI:10.1016/S0092-8674(03)00653-6