Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis

A new approach for the removal of the pesticide lindane (γ-hexachlorocyclohexane or γ-HCH) makes use of catalytic reduction of HCH to benzene over a metal catalyst, namely Pd(0). Since specific surface area plays an important role in reactivity of catalysts, this study investigated the use of bioPd(...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 66; no. 1; pp. 99 - 105
Main Authors Mertens, Birgit, Blothe, Christian, Windey, Kim, De Windt, Wim, Verstraete, Willy
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new approach for the removal of the pesticide lindane (γ-hexachlorocyclohexane or γ-HCH) makes use of catalytic reduction of HCH to benzene over a metal catalyst, namely Pd(0). Since specific surface area plays an important role in reactivity of catalysts, this study investigated the use of bioPd(0), i.e. nano-scale Pd(0) particles precipitated on the biomass of Shewanella oneidensis, for the removal of lindane. It was demonstrated that bioPd(0) has catalytic activity towards dechlorination of γ-HCH, with the addition of formate as electron donor, and that dechlorination with bioPd(0) was more efficient than with commercial powdered Pd(0). The biodegradable compound benzene was formed as reaction product and other HCH isomers could also be dechlorinated. Subsequently bioPd(0) was implemented in a membrane reactor technology for the treatment of γ-HCH polluted water. In a fed-batch process configuration with formate as electron donor, a removal percentage of 98% of γ-HCH saturated water (10 mg l −1) was achieved within 24 h. The measured chloride mass balance approached the theoretical value. The results of this work showed that a complete, efficient and fast removal of lindane was achieved by biocatalysis with bioPd(0).
Bibliography:http://dx.doi.org/10.1016/j.chemosphere.2006.05.018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2006.05.018