Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide

A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration an...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 65; no. 6; pp. 2524 - 2536
Main Authors Karlsson, J.O., Cravalho, E.G., Borel Rinkes, I.H., Tompkins, R.G., Yarmush, M.L., Toner, M.
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 01.12.1993
Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(93)81319-5