General Liquid‐Driven Coaxial Flow Focusing Preparation of Novel Microcapsules for Rechargeable Magnesium Batteries
Magnesium batteries have been considered promising candidates for next‐generation energy storage systems owing to their high energy density, good safety without dendrite formation, and low cost of magnesium resources. However, high‐performance cathodes with stable capacity, good conductivity, and fa...
Saved in:
Published in | Advanced science Vol. 8; no. 2; pp. 2002298 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.01.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Magnesium batteries have been considered promising candidates for next‐generation energy storage systems owing to their high energy density, good safety without dendrite formation, and low cost of magnesium resources. However, high‐performance cathodes with stable capacity, good conductivity, and fast ions transport are needed, since many conventional cathodes possess a low performance and poor preparation controllability. Herein, a liquid‐driven coaxial flow focusing (LDCFF) approach for preparing a novel microcapsule system with controllable size, high loading, and stable magnesium‐storage performance is presented. Taking the MoS2‐infilled microcapsule as a case study, the magnesium battery cathode based on the microcapsules displays a capacity of 100 mAh g−1 after 100 cycles. High capacity retention is achieved at both low and high temperatures of −10, ‒5, and 45 °C, and a stable rate‐performance is also obtained. The influences of the liquid flow rates on the size and shell thickness of the microcapsules are investigated; and electron and ion diffusion properties are also studied by first‐principle calculations. The presented LDCFF method is quite general, and the high performance of the microcapsules enables them to find broad applications for making emerging energy‐storage materials and secondary battery systems.
A liquid‐driven coaxial flow focusing micro‐fluidic method for preparing microcapsules which can be used in high‐performance secondary batteries is presented. The magnesium batteries based on the MoS2‐infilled microcapsules show stable capacities at different temperatures, and a recoverable rate performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202002298 |