Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis

Epigenetic deregulation plays an important role in liver carcinogenesis. Using transcriptome sequencing, we examined the expression of 591 epigenetic regulators in hepatitis B‐associated human hepatocellular carcinoma (HCC). We found that aberrant expression of epigenetic regulators was a common eve...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 63; no. 2; pp. 474 - 487
Main Authors Wong, Chun‐Ming, Wei, Lai, Law, Cheuk‐Ting, Ho, Daniel Wai‐Hung, Tsang, Felice Ho‐Ching, Au, Sandy Leung‐Kuen, Sze, Karen Man‐Fong, Lee, Joyce Man‐Fong, Wong, Carmen Chak‐Lui, Ng, Irene Oi‐Lin
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epigenetic deregulation plays an important role in liver carcinogenesis. Using transcriptome sequencing, we examined the expression of 591 epigenetic regulators in hepatitis B‐associated human hepatocellular carcinoma (HCC). We found that aberrant expression of epigenetic regulators was a common event in HCC. We further identified SETDB1 (SET domain, bifurcated 1), an H3K9‐specific histone methyltransferase, as the most significantly up‐regulated epigenetic regulator in human HCCs. Up‐regulation of SETDB1 was significantly associated with HCC disease progression, cancer aggressiveness, and poorer prognosis of HCC patients. Functionally, we showed that knockdown of SETDB1 reduced HCC cell proliferation in vitro and suppressed orthotopic tumorigenicity in vivo. Inactivation of SETDB1 also impeded HCC cell migration and abolished lung metastasis in nude mice. Interestingly, SETDB1 protein was consistently up‐regulated in all metastatic foci found in different organs, suggesting that SETDB1 was essential for HCC metastatic progression. Mechanistically, we showed that the frequent up‐regulation of SETDB1 in human HCC was attributed to the recurrent SETDB1 gene copy gain at chromosome 1q21. In addition, hyperactivation of specificity protein 1 transcription factor in HCC enhanced SETDB1 expression at the transcriptional level. Furthermore, we identified miR‐29 as a negative regulator of SETDB1. Down‐regulation of miR‐29 expression in human HCC contributed to SETDB1 up‐regulation by relieving its post‐transcriptional regulation. Conclusion: SETDB1 is an oncogene that is frequently up‐regulated in human HCCs; the multiplicity of SETDB1 activating mechanisms at the chromosomal, transcriptional, and posttranscriptional levels together facilitates SETDB1 up‐regulation in human HCC. (Hepatology 2016;63:474–487)
Bibliography:These authors contributed equally to this work.
Potential conflict of interest: Nothing to report.
Supported by the Hong Kong Research Grants Council General Research Fund (HKU 780612M and 17115815) and the HKU Seed Funding Programme for Basic Research (201111159099). I.O.‐L.N. is Loke Yew Professor in Pathology.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0270-9139
1527-3350
1527-3350
DOI:10.1002/hep.28304