Selanylimidazopyridine Prevents Lipopolysaccharide-Induced Depressive-Like Behavior in Mice by Targeting Neurotrophins and Inflammatory/Oxidative Mediators
Inasmuch, as the major depressive disorder (MDD) has been characterized as a heterogeneous disease as the inflammatory processes, neurotrophic factors' dysfunction and oxidative/nitrosative stress are believed to play a vital role in its establishment. Organoselenium compounds stand out due to...
Saved in:
Published in | Frontiers in neuroscience Vol. 12; p. 486 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
19.07.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inasmuch, as the major depressive disorder (MDD) has been characterized as a heterogeneous disease as the inflammatory processes, neurotrophic factors' dysfunction and oxidative/nitrosative stress are believed to play a vital role in its establishment. Organoselenium compounds stand out due to their antioxidant, anti-inflammatory, neuroprotective, and antidepressant effects. In this sense, the present study investigated the effect of 3-((4-methoxyphenyl)selanyl)-2-phenylimidazo[1,2-a]pyridine (MPI; 20 and 50 mg/kg, intragastrically) pretreatment [30 min prior lipopolysaccharide (LPS) challenge (0.83 mg/kg)] on acute LPS induced depressive-like behavior, neuroinflammation, and oxidative stress. MPI was able to prevent the increased immobility time induced by LPS on the forced swimming test (FST), the increase in pro-inflammatory cytokines' expression in the hippocampus (HC) of mice after LPS challenge via NFkB downregulation, and the increase of the reactive oxygen species generation and lipid peroxidation in the prefrontal cortex and HC of mice. It was observed that at the doses tested, MPI protected against reducing levels of BDNF in the cortex and HC of mice challenged with LPS. These observations suggest that the antidepressant-like effect of MPI depends on its capacity to modulate the inflammatory, antioxidant, and neurotrophic systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience Edited by: Abed N. Azab, Ben-Gurion University of the Negev, Israel Reviewed by: Luigia Trabace, University of Foggia, Italy; Galila Agam, Ben-Gurion University of the Negev, Israel These authors have contributed equally to this work. |
ISSN: | 1662-4548 1662-453X 1662-453X |
DOI: | 10.3389/fnins.2018.00486 |