Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells
Immune checkpoint antibody-mediated blockade has gained attention as a new cancer immunotherapy strategy. Accumulating evidence suggests that this therapy imparts a survival benefit to metastatic melanoma and non-small cell lung cancer patients. A substantial amount of data on immune checkpoint anti...
Saved in:
Published in | International journal of oncology Vol. 49; no. 3; pp. 1099 - 1107 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Greece
D.A. Spandidos
01.09.2016
Spandidos Publications Spandidos Publications UK Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Immune checkpoint antibody-mediated blockade has gained attention as a new cancer immunotherapy strategy. Accumulating evidence suggests that this therapy imparts a survival benefit to metastatic melanoma and non-small cell lung cancer patients. A substantial amount of data on immune checkpoint antibodies has been collected from clinical trials; however, the direct effect of the antibodies on human peripheral blood mononuclear cells (PBMCs) has not been exclusively investigated. In this study, we developed an anti-programmed death-1 (PD-1) antibody (with biosimilarity to nivolumab) and examined the effects of the antibody on PBMCs derived from cancer patients. Specifically, we investigated the effects of the anti-PD-1 antibody on proliferation, cytokine production, cytotoxic T lymphocytes (CTL) and regulatory T cells. These investigations yielded several important results. First, the anti-PD-1 antibody had no obvious effect on resting PBMCs; however, high levels of the anti-PD-1 antibody partly stimulated PBMC proliferation when accompanied by an anti-CD3 antibody. Second, the anti-PD-1 antibody restored the growth inhibition of anti-CD3 Ab-stimulated PBMCs mediated by PD-L1. Third, the anti-PD-1 antibody exhibited a moderate inhibitory effect on the induction of myeloid-derived suppressor cells (MDSCs) by anti-CD3 antibody stimulation. Additionally, the presence of the anti-PD-1 antibody promoted antigen-specific CTL induction, which suggests that combining anti-PD-1 antibody and conventional immunotherapy treatments may have beneficial effects. These results indicate that specific cellular immunological mechanisms are partly responsible for the antitumor effect exhibited by the anti-PD-1 antibody against advanced cancers in clinical trials. |
---|---|
ISSN: | 1019-6439 1791-2423 |
DOI: | 10.3892/ijo.2016.3586 |