Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson's Disease
In last years, several approaches to develop an effective Computer-Aided-Diagnosis (CAD) system for Parkinson's Disease (PD) have been proposed. Most of these methods have focused almost exclusively on brain images through the use of Machine-Learning algorithms suitable to characterize structur...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 12; p. 53 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
14.08.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In last years, several approaches to develop an effective Computer-Aided-Diagnosis (CAD) system for Parkinson's Disease (PD) have been proposed. Most of these methods have focused almost exclusively on brain images through the use of Machine-Learning algorithms suitable to characterize structural or functional patterns. Those patterns provide enough information about the status and/or the progression at intermediate and advanced stages of Parkinson's Disease. Nevertheless this information could be insufficient at early stages of the pathology. The Parkinson's Progression Markers Initiative (PPMI) database includes neurological images along with multiple biomedical tests. This information opens up the possibility of comparing different biomarker classification results. As data come from heterogeneous sources, it is expected that we could include some of these biomarkers in order to obtain new information about the pathology. Based on that idea, this work presents an Ensemble Classification model with Performance Weighting. This proposal has been tested comparing Healthy Control subjects (HC) vs. patients with PD (considering both PD and SWEDD labeled subjects as the same class). This model combines several Support-Vector-Machine (SVM) with linear kernel classifiers for different biomedical group of tests-including CerebroSpinal Fluid (CSF), RNA, and Serum tests-and pre-processed neuroimages features (Voxels-As-Features and a list of defined Morphological Features) from PPMI database subjects. The proposed methodology makes use of all data sources and selects the most discriminant features (mainly from neuroimages). Using this performance-weighted ensemble classification model, classification results up to 96% were obtained. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Stavros I. Dimitriadis, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, United Kingdom; Alessia Sarica, Centro di Ricerca Neuroscientifica, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi Magna Graecia, Italy Edited by: Isabella Castiglioni, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Italy |
ISSN: | 1662-5196 1662-5196 |
DOI: | 10.3389/fninf.2018.00053 |