Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review

Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability cau...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 13; p. 87
Main Authors Saha, Simanto, Baumert, Mathias
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 21.01.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
AbstractList Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
Author Baumert, Mathias
Saha, Simanto
AuthorAffiliation School of Electrical and Electronic Engineering, The University of Adelaide , Adelaide, SA , Australia
AuthorAffiliation_xml – name: School of Electrical and Electronic Engineering, The University of Adelaide , Adelaide, SA , Australia
Author_xml – sequence: 1
  givenname: Simanto
  surname: Saha
  fullname: Saha, Simanto
– sequence: 2
  givenname: Mathias
  surname: Baumert
  fullname: Baumert, Mathias
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32038208$$D View this record in MEDLINE/PubMed
BookMark eNp1kstrGzEQxpeS0jzae09loZde1tVjpZV6KCTGTQ2BQl9XMZZGqcx65Uq7KfnvK9tJSQI9adB834-PmTmtjoY4YFW9pmTGudLv_WDjZsYI1TNCiOqeVSdUStYIqtTRg_q4Os15TYhkUpAX1TFnhCtG1EkFy2FM0NQwuLqUmJo8rdZox_onpACr0Ifxtg5DvVhcNheQ0dXfcMgxhU0cY6ovEpTmPG62UzEfEB4sfqjP6694E_DPy-q5hz7jq7v3rPrxafF9_rm5-nK5nJ9fNVYIOTaMlnDgwbWdFp5Y5piVnjLHvepalNpJ28pWtR464MRKQVe6Ew6oRu605GfV8sB1EdZmWwJCujURgtl_xHRtII3B9mgcRw8AjjKPLdWwArSis60WgitndWF9PLC202qDzuJuSP0j6OPOEH6Z63hjpFaCy64A3t0BUvw9YR7NJmSLfQ8DxikbxgUvC-OUF-nbJ9J1nNJQRlVULVO6K7mK6s3DRP-i3G-yCORBYFPMOaE3NowwhrgLGHpDidmdjNmfjNmdjNmfTDGSJ8Z79n8tfwHltcTo
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_3389_fnins_2020_00717
crossref_primary_10_1088_1741_2552_ad8b6d
crossref_primary_10_3389_fnins_2025_1487175
crossref_primary_10_3390_electronics11152293
crossref_primary_10_1088_1741_2552_ad49d7
crossref_primary_10_1007_s11517_023_02770_w
crossref_primary_10_1177_00469580231221285
crossref_primary_10_3390_mti5030012
crossref_primary_10_1016_j_compbiomed_2024_108705
crossref_primary_10_1038_s42003_022_03665_6
crossref_primary_10_7717_peerj_cs_2649
crossref_primary_10_3389_fnins_2021_680938
crossref_primary_10_3390_bioengineering11111111
crossref_primary_10_1155_2023_2793211
crossref_primary_10_1007_s11571_021_09776_w
crossref_primary_10_3390_bios12080555
crossref_primary_10_1016_j_heliyon_2023_e13745
crossref_primary_10_1109_ACCESS_2022_3148380
crossref_primary_10_1088_1741_2552_ac39b8
crossref_primary_10_1016_j_autcon_2024_105670
crossref_primary_10_1016_j_neunet_2023_03_039
crossref_primary_10_1080_2326263X_2022_2050513
crossref_primary_10_1088_1741_2552_ad9777
crossref_primary_10_3389_fnrgo_2021_784827
crossref_primary_10_1002_ima_22643
crossref_primary_10_1016_j_neucom_2021_03_038
crossref_primary_10_1088_1741_2552_ad7f8d
crossref_primary_10_3389_fnhum_2024_1448584
crossref_primary_10_3389_fnins_2020_568104
crossref_primary_10_1016_j_jneumeth_2022_109736
crossref_primary_10_1016_j_sctalk_2025_100422
crossref_primary_10_3390_s20247250
crossref_primary_10_2196_45405
crossref_primary_10_3389_fnins_2023_1122661
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1016_j_procs_2023_10_419
crossref_primary_10_3390_brainsci12020234
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_3390_app11199218
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1016_j_aei_2024_102971
crossref_primary_10_1016_j_eswa_2023_120205
crossref_primary_10_3390_s21061932
crossref_primary_10_3390_brainsci14080832
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_1080_27706710_2022_2120775
crossref_primary_10_26599_BSA_2020_9050021
crossref_primary_10_1109_TNSRE_2022_3167262
crossref_primary_10_2147_ITT_S477841
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_3390_jpm15010010
crossref_primary_10_1016_j_neuroimage_2021_118373
crossref_primary_10_3390_ijerph21111466
crossref_primary_10_1016_j_bspc_2025_107552
crossref_primary_10_1088_1741_2552_abda0b
crossref_primary_10_1007_s10015_024_00981_4
crossref_primary_10_3389_fnhum_2021_648275
crossref_primary_10_1016_j_bspc_2024_106282
crossref_primary_10_1080_17470919_2023_2278199
crossref_primary_10_1109_TCDS_2023_3279262
crossref_primary_10_1016_j_compbiomed_2021_104969
crossref_primary_10_1139_cjce_2021_0646
crossref_primary_10_1016_j_dcn_2022_101096
crossref_primary_10_1016_j_eswa_2022_118511
crossref_primary_10_3389_fnhum_2021_647908
crossref_primary_10_3390_math10091588
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_1088_1741_2552_ab9a98
crossref_primary_10_1109_ACCESS_2024_3479308
crossref_primary_10_1109_ACCESS_2021_3085865
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_1186_s42490_024_00080_2
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1088_1741_2552_acc975
crossref_primary_10_3389_fnhum_2021_732946
crossref_primary_10_3389_frobt_2020_00125
crossref_primary_10_1007_s40815_021_01186_8
crossref_primary_10_1016_j_neucom_2024_127805
crossref_primary_10_1109_TNSRE_2022_3186442
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_3390_biology13100830
crossref_primary_10_3390_app13074438
crossref_primary_10_3389_fnhum_2022_938708
crossref_primary_10_1088_1741_2552_ad3eb5
crossref_primary_10_1109_ACCESS_2020_3035347
crossref_primary_10_1016_j_neubiorev_2021_104520
crossref_primary_10_1109_TBME_2023_3295769
crossref_primary_10_1109_TNSRE_2021_3057938
crossref_primary_10_3389_fpubh_2022_880399
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_3390_app142311208
crossref_primary_10_1109_ACCESS_2024_3452781
crossref_primary_10_1088_1741_2552_acf78a
crossref_primary_10_1016_j_compbiomed_2023_107658
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_1145_3705733
crossref_primary_10_1109_TBME_2024_3440036
crossref_primary_10_1109_TNSRE_2023_3265304
crossref_primary_10_3389_fnhum_2022_831995
crossref_primary_10_1109_TIM_2024_3522618
crossref_primary_10_1016_j_chb_2023_107789
crossref_primary_10_1109_ACCESS_2025_3541985
crossref_primary_10_3390_s22176572
crossref_primary_10_1002_hbm_26500
crossref_primary_10_1109_TSMC_2024_3355101
crossref_primary_10_3389_fninf_2022_961089
crossref_primary_10_3390_s22166093
crossref_primary_10_1016_j_bspc_2023_104851
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1038_s41398_024_02876_1
crossref_primary_10_1142_S0219622022500201
crossref_primary_10_1007_s12124_024_09853_9
crossref_primary_10_1016_j_neunet_2022_03_025
crossref_primary_10_3390_s21082750
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1088_1741_2552_ac636a
crossref_primary_10_1142_S273748072441005X
crossref_primary_10_1109_ACCESS_2024_3432691
crossref_primary_10_3390_computers12070145
crossref_primary_10_3390_s23177520
crossref_primary_10_1371_journal_pone_0268880
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_3390_s21206710
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_1109_ACCESS_2021_3100638
crossref_primary_10_3389_fnhum_2020_576241
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_1109_ACCESS_2023_3247133
crossref_primary_10_3389_fnrgo_2020_602504
Cites_doi 10.1109/MCI.2015.2501545
10.1016/j.clinph.2014.09.032
10.1088/1741-2560/12/6/066024
10.1007/s10548-009-0121-6
10.1002/ana.23879
10.1152/jn.00163.2014
10.1186/1471-2202-10-S1-P84
10.1038/nrn1257.
10.1109/TSMC.2016.2523762
10.1097/01.wco.0000200544.29915.cc
10.1016/j.neuroimage.2015.02.039
10.1371/journal.pone.0207351
10.1038/nn.3633
10.1113/jphysiol.2006.123067
10.1016/j.pneurobio.2010.09.002
10.1007/s10548-014-0364-8
10.1088/1741-2560/12/4/046027
10.1523/JNEUROSCI.2912-18.2019
10.1073/pnas.1817207116
10.1109/LSP.2009.2022557
10.1088/1741-2552/aaaf82
10.1371/journal.pbio.2003787
10.3389/fninf.2019.00047
10.1016/j.pmr.2009.07.003
10.1016/j.neuroimage.2010.03.022
10.1016/j.neuroimage.2015.02.015
10.1038/18581
10.1016/j.tics.2010.01.008
10.1016/j.neuroscience.2016.11.023
10.1016/j.jphysparis.2006.03.012
10.1016/j.neuron.2014.04.048
10.1007/s00221-007-1086-x
10.1109/JTEHM.2018.2875985
10.1016/j.neuroscience.2015.07.043
10.1016/j.jneumeth.2015.01.033
10.1109/TBME.2019.2913914.
10.1007/s11517-012-1018-1
10.1109/TBME.2010.2082540
10.1049/htl.2016.0073
10.1109/TBME.2009.2039997
10.1371/journal.pone.0148886
10.1016/j.neuroimage.2015.01.055
10.1016/j.tins.2015.12.006
10.1088/1741-2552/aaf3f6
10.1073/pnas.1113148109
10.1088/1741-2560/8/2/025002
10.1016/j.tics.2018.03.003
10.1038/s41598-019-43041-9
10.1371/journal.pone.0020422
10.1371/journal.pone.0087056
10.1073/pnas.0811168106
10.1109/JPROC.2015.2404941
10.1371/journal.pone.0143962
10.1053/apmr.2001.24286
10.1523/JNEUROSCI.4366-09.2009
10.1016/0028-3932(95)00073-C
10.1038/nrn2961
10.3389/fnins.2017.00060
10.3389/fnhum.2017.00604
10.1007/s10548-012-0235-0
10.1109/TNSRE.2017.2778178
10.1016/j.neuropsychologia.2017.02.005
10.1016/0013-4694(94)90135-X
10.1126/scirobotics.aaw6844
10.1093/brain/124.11.2268
10.1088/1741-2560/11/3/035011
10.1371/journal.pone.0128456
10.1016/j.biopsycho.2011.09.006
10.1002/hbm.21037
10.1016/j.neuron.2018.01.040
10.1038/nn.3616
10.1016/j.neuroimage.2010.01.071
10.1109/JPROC.2015.2413993
10.3389/fnhum.2019.00130
10.1109/TBME.2013.2253608
10.1016/0013-4694(91)90040-B
10.1073/pnas.1613383113
10.1016/j.neuroimage.2019.07.003
10.1038/s41598-017-08928-5
10.3389/fpsyg.2011.00100
10.1523/JNEUROSCI.6107-09.2010
10.1016/j.neunet.2014.05.012
10.1109/86.895946
10.1088/1741-2552/aa8ce3
10.1016/j.neuroimage.2015.04.020
10.1016/j.neuroimage.2016.11.006
10.1186/1743-0003-11-9
ContentType Journal Article
Copyright Copyright © 2020 Saha and Baumert.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Saha and Baumert. 2020 Saha and Baumert
Copyright_xml – notice: Copyright © 2020 Saha and Baumert.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Saha and Baumert. 2020 Saha and Baumert
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2019.00087
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9
PMC6985367
32038208
10_3389_fncom_2019_00087
Genre Journal Article
Review
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c556t-21626afad4795f0c2d2c6f12d3f874e69d6c46484fa7a30c651b975da19e3d963
IEDL.DBID DOA
ISSN 1662-5188
IngestDate Wed Aug 27 01:00:26 EDT 2025
Thu Aug 21 18:18:42 EDT 2025
Fri Jul 11 04:35:00 EDT 2025
Fri Jul 25 11:42:36 EDT 2025
Wed Feb 19 02:31:49 EST 2025
Tue Jul 01 02:18:14 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain computer interface
electroencephalography
transfer learning
inter-subject associativity
sensorimotor rhythms
Language English
License Copyright © 2020 Saha and Baumert.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-21626afad4795f0c2d2c6f12d3f874e69d6c46484fa7a30c651b975da19e3d963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Chun-Shu Wei, National Chiao Tung University, Taiwan
Reviewed by: Bradley Jay Edelman, School of Medicine, Stanford University, United States; Po-Chih Kuo, Massachusetts Institute of Technology, United States; Yu-Kai Wang, University of Technology Sydney, Australia
OpenAccessLink https://doaj.org/article/d3efaaad12fe419abaec57c495538dc9
PMID 32038208
PQID 2342897495
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985367
proquest_miscellaneous_2353008313
proquest_journals_2342897495
pubmed_primary_32038208
crossref_citationtrail_10_3389_fncom_2019_00087
crossref_primary_10_3389_fncom_2019_00087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-21
PublicationDateYYYYMMDD 2020-01-21
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-21
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Leamy (B44) 2014; 11
Singh (B72) 2016; 113
Perdikis (B58) 2018; 16
Wang (B81) 2010; 21
Kasahara (B41) 2015; 110
Clarke (B14) 1999
Fox (B24) 2015; 111
Suk (B74) 2014; 9
Darvishi (B15) 2017; 11
Duarte (B19) 2015; 113
Saha (B67) 2019; 13
Hebb (B27) 1949
Wu (B87) 2014; 17
Acqualagna (B1) 2016; 11
Meyer (B51) 2013; 26
Zhao (B89) 2016; 46
Seghier (B70) 2018; 22
Lu (B50) 2010; 57
Orsborn (B56) 2014; 82
Samek (B68) 2013; 60
Wolpaw (B85) 1991; 78
Müller-Putz (B53) 2014; 11
Jochumsen (B37) 2017; 11
Wang (B82) 2011; 6
Edelman (B20) 2019; 4
Lotte (B47) 2015; 103
Brown (B12) 2003; 4
Reichert (B63) 2015; 126
Blankertz (B9) 2009; 10
Kang (B39) 2014; 57
Wolpaw (B84) 1994; 90
Jayaram (B33) 2016; 11
Ramoser (B61) 2000; 8
Chiarelli (B13) 2018; 15
Ahn (B2) 2015; 243
Niazi (B54) 2013; 51
Herzfeld (B28) 2014; 17
Lotze (B48) 2001; 124
Ruffino (B64) 2017; 341
Deco (B17) 2011; 12
Vyas (B80) 2018; 97
Ostry (B57) 2016; 39
Hong (B31) 2017; 7
Lotze (B49) 2006; 99
Blankertz (B10) 2010; 51
Li (B45) 2019; 13
Saha (B66); 26
He (B26) 2019
Jeannerod (B34) 1995; 33
Hammer (B25) 2012; 89
Jackson (B32) 2001; 82
Baldassarre (B4) 2012; 109
Johnson (B38) 2018; 15
Smith (B73) 2019; 39
Wronkiewicz (B86) 2015; 12
Faller (B22) 2019; 116
Raichle (B59) 2009; 29
Betzel (B6) 2019; 202
Sannelli (B69) 2019; 14
Birbaumer (B7) 1999; 398
Úbeda (B76) 2015; 10
Allami (B3) 2008; 184
Tomassini (B75) 2011; 32
Krusienski (B43) 2011; 8
Vallence (B77) 2015; 304
Zich (B90) 2015; 114
Fahimi (B21) 2018; 16
Betzel (B5) 2017; 160
Vidaurre (B79) 2010; 23
Blankertz (B8) 2002
Honey (B29) 2009; 106
Selfslagh (B71) 2019; 9
Krakauer (B42) 2006; 19
Dobkin (B18) 2007; 579
Ramos-Murguialday (B62) 2013; 74
Li (B46) 2010; 57
Morioka (B52) 2015; 111
Jeunet (B36) 2015; 10
Northoff (B55) 2010; 92
Fazli (B23) 2015; 103
Zhang (B88) 2015; 12
Darvishi (B16) 2018; 6
Wens (B83) 2014; 27
Raichle (B60) 2010; 14
Honey (B30) 2010; 52
Bradberry (B11) 2010; 30
Saha (B65); 4
Vasilyev (B78) 2017; 97
Jensen (B35) 2011; 2
Kang (B40) 2009; 16
References_xml – volume: 11
  start-page: 20
  year: 2016
  ident: B33
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Magaz.
  doi: 10.1109/MCI.2015.2501545
– volume: 126
  start-page: 2068
  year: 2015
  ident: B63
  article-title: Resting-state sensorimotor rhythm (smr) power predicts the ability to up-regulate smr in an eeg-instrumental conditioning paradigm
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.09.032
– volume: 12
  start-page: 066024
  year: 2015
  ident: B88
  article-title: Efficient resting-state eeg network facilitates motor imagery performance
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/6/066024
– volume: 23
  start-page: 194
  year: 2010
  ident: B79
  article-title: Towards a cure for bci illiteracy
  publication-title: Brain Topography
  doi: 10.1007/s10548-009-0121-6
– volume: 74
  start-page: 100
  year: 2013
  ident: B62
  article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 113
  start-page: 2682
  year: 2015
  ident: B19
  article-title: Effects of robotically modulating kinematic variability on motor skill learning and motivation
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00163.2014
– volume: 10
  start-page: P84
  year: 2009
  ident: B9
  article-title: Predicting bci performance to study bci illiteracy
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-S1-P84
– volume: 4
  start-page: 1013
  year: 2003
  ident: B12
  article-title: The legacy of donald o. hebb: more than the hebb synapse
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1257.
– volume: 46
  start-page: 947
  year: 2016
  ident: B89
  article-title: Ssvep-based brain–computer interface controlled functional electrical stimulation system for upper extremity rehabilitation
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
  doi: 10.1109/TSMC.2016.2523762
– volume: 19
  start-page: 84
  year: 2006
  ident: B42
  article-title: Motor learning: its relevance to stroke recovery and neurorehabilitation
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/01.wco.0000200544.29915.cc
– volume: 111
  start-page: 611
  year: 2015
  ident: B24
  article-title: The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.039
– volume: 14
  start-page: e0207351
  year: 2019
  ident: B69
  article-title: A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207351
– volume: 17
  start-page: 149
  year: 2014
  ident: B28
  article-title: Motor variability is not noise, but grist for the learning mill
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3633
– start-page: 637
  volume-title: Basic Neurochemistry: Molecular, Cellular, and Medical Aspects
  year: 1999
  ident: B14
  article-title: Circulation and energy metabolism of the brain,
– volume: 579
  start-page: 637
  year: 2007
  ident: B18
  article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.123067
– volume: 92
  start-page: 593
  year: 2010
  ident: B55
  article-title: The brain and its resting state activity-experimental and methodological implications
  publication-title: Progress Neurobiol.
  doi: 10.1016/j.pneurobio.2010.09.002
– volume: 27
  start-page: 620
  year: 2014
  ident: B83
  article-title: Inter-and intra-subject variability of neuromagnetic resting state networks
  publication-title: Brain Topography
  doi: 10.1007/s10548-014-0364-8
– volume: 12
  start-page: 046027
  year: 2015
  ident: B86
  article-title: Leveraging anatomical information to improve transfer learning in brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046027
– volume: 39
  start-page: 6136
  year: 2019
  ident: B73
  article-title: Structural variability in the human brain reflects fine-grained functional architecture at the population level
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2912-18.2019
– volume: 116
  start-page: 6482
  year: 2019
  ident: B22
  article-title: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1817207116
– volume: 16
  start-page: 683
  year: 2009
  ident: B40
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2022557
– volume: 15
  start-page: 036028
  year: 2018
  ident: B13
  article-title: Deep learning for hybrid eeg-fnirs brain–computer interface: application to motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaaf82
– volume: 16
  start-page: e2003787
  year: 2018
  ident: B58
  article-title: The cybathlon bci race: successful longitudinal mutual learning with two tetraplegic users
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2003787
– volume: 13
  start-page: 47
  year: 2019
  ident: B67
  article-title: Wavelet entropy-based inter-subject associative cortical source localization for sensorimotor BCI
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2019.00047
– volume: 21
  start-page: 157
  year: 2010
  ident: B81
  article-title: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity
  publication-title: Phys. Med. Rehabil. Clinics
  doi: 10.1016/j.pmr.2009.07.003
– volume: 51
  start-page: 1303
  year: 2010
  ident: B10
  article-title: Neurophysiological predictor of smr-based bci performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.022
– volume: 111
  start-page: 167
  year: 2015
  ident: B52
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– volume: 398
  start-page: 297
  year: 1999
  ident: B7
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 14
  start-page: 180
  year: 2010
  ident: B60
  article-title: Two views of brain function
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2010.01.008
– volume: 341
  start-page: 61
  year: 2017
  ident: B64
  article-title: Neural plasticity during motor learning with motor imagery practice: Review and perspectives
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.11.023
– volume: 99
  start-page: 386
  year: 2006
  ident: B49
  article-title: Motor imagery
  publication-title: J. Physiol. Paris
  doi: 10.1016/j.jphysparis.2006.03.012
– volume: 82
  start-page: 1380
  year: 2014
  ident: B56
  article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.048
– volume: 184
  start-page: 105
  year: 2008
  ident: B3
  article-title: Visuo-motor learning with combination of different rates of motor imagery and physical practice
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-1086-x
– volume: 6
  start-page: 1
  year: 2018
  ident: B16
  article-title: Reaction time predicts brain–computer interface aptitude
  publication-title: IEEE J. Trans. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2875985
– volume: 304
  start-page: 266
  year: 2015
  ident: B77
  article-title: Inter-and intra-subject variability of motor cortex plasticity following continuous theta-burst stimulation
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.07.043
– volume: 243
  start-page: 103
  year: 2015
  ident: B2
  article-title: Performance variation in motor imagery brain–computer interface: a brief review
  publication-title: J. Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.01.033
– year: 2019
  ident: B26
  article-title: Transfer learning for brain-computer interfaces: a euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2019.2913914.
– volume: 51
  start-page: 507
  year: 2013
  ident: B54
  article-title: Detection of movement-related cortical potentials based on subject-independent training
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1018-1
– volume: 57
  start-page: 2936
  year: 2010
  ident: B50
  article-title: Regularized common spatial pattern with aggregation for eeg classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082540
– volume: 4
  start-page: 39
  ident: B65
  article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations
  publication-title: Healthcare Technol. Lett.
  doi: 10.1049/htl.2016.0073
– volume: 57
  start-page: 1318
  year: 2010
  ident: B46
  article-title: Application of covariate shift adaptation techniques in brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2039997
– volume: 11
  start-page: e0148886
  year: 2016
  ident: B1
  article-title: Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0148886
– volume: 110
  start-page: 95
  year: 2015
  ident: B41
  article-title: Neuroanatomical correlates of brain–computer interface performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.055
– volume: 39
  start-page: 114
  year: 2016
  ident: B57
  article-title: Sensory plasticity in human motor learning
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2015.12.006
– volume: 16
  start-page: 026007
  year: 2018
  ident: B21
  article-title: Inter-subject transfer learning with end-to-end deep convolutional neural network for eeg-based bci
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aaf3f6
– volume: 109
  start-page: 3516
  year: 2012
  ident: B4
  article-title: Individual variability in functional connectivity predicts performance of a perceptual task
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1113148109
– volume: 8
  start-page: 025002
  year: 2011
  ident: B43
  article-title: Critical issues in state-of-the-art brain–computer interface signal processing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025002
– volume: 22
  start-page: 517
  year: 2018
  ident: B70
  article-title: Interpreting and utilising intersubject variability in brain function
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2018.03.003
– volume: 9
  start-page: 6782
  year: 2019
  ident: B71
  article-title: Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43041-9
– volume: 6
  start-page: e20422
  year: 2011
  ident: B82
  article-title: A collaborative brain-computer interface for improving human performance
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020422
– volume: 9
  start-page: e87056
  year: 2014
  ident: B74
  article-title: Predicting BCI subject performance using probabilistic spatio-temporal filters
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087056
– volume: 106
  start-page: 2035
  year: 2009
  ident: B29
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811168106
– volume: 103
  start-page: 871
  year: 2015
  ident: B47
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2404941
– volume: 10
  start-page: e0143962
  year: 2015
  ident: B36
  article-title: Predicting mental imagery-based bci performance from personality, cognitive profile and neurophysiological patterns
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0143962
– volume: 82
  start-page: 1133
  year: 2001
  ident: B32
  article-title: Potential role of mental practice using motor imagery in neurologic rehabilitation
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2001.24286
– volume: 29
  start-page: 12729
  year: 2009
  ident: B59
  article-title: A paradigm shift in functional brain imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4366-09.2009
– start-page: 157
  volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: B8
  article-title: Classifying single trial eeg: towards brain computer interfacing,
– volume: 33
  start-page: 1419
  year: 1995
  ident: B34
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(95)00073-C
– volume: 12
  start-page: 43
  year: 2011
  ident: B17
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– volume: 11
  start-page: 60
  year: 2017
  ident: B15
  article-title: Proprioceptive feedback facilitates motor imagery-related operant learning of sensorimotor β-band modulation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00060
– volume: 11
  start-page: 604
  year: 2017
  ident: B37
  article-title: Quantification of movement-related eeg correlates associated with motor training: a study on movement-related cortical potentials and sensorimotor rhythms
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00604
– volume: 26
  start-page: 98
  year: 2013
  ident: B51
  article-title: Electrophysiological correlation patterns of resting state networks in single subjects: a combined eeg–fmri study
  publication-title: Brain Topography
  doi: 10.1007/s10548-012-0235-0
– volume: 26
  start-page: 371
  ident: B66
  article-title: Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2778178
– volume: 97
  start-page: 56
  year: 2017
  ident: B78
  article-title: Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.02.005
– volume: 90
  start-page: 444
  year: 1994
  ident: B84
  article-title: Multichannel eeg-based brain-computer communication
  publication-title: Electroencephal. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(94)90135-X
– volume: 4
  start-page: eaaw6844
  year: 2019
  ident: B20
  article-title: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaw6844
– volume: 124
  start-page: 2268
  year: 2001
  ident: B48
  article-title: Phantom movements and pain an fmri study in upper limb amputees
  publication-title: Brain
  doi: 10.1093/brain/124.11.2268
– volume: 11
  start-page: 035011
  year: 2014
  ident: B53
  article-title: Motor imagery-induced eeg patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035011
– volume: 10
  start-page: e0128456
  year: 2015
  ident: B76
  article-title: Assessing movement factors in upper limb kinematics decoding from eeg signals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0128456
– volume: 89
  start-page: 80
  year: 2012
  ident: B25
  article-title: Psychological predictors of smr-bci performance
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2011.09.006
– volume-title: The Organization of Behavior, Vol. 65.
  year: 1949
  ident: B27
– volume: 32
  start-page: 494
  year: 2011
  ident: B75
  article-title: Structural and functional bases for individual differences in motor learning
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.21037
– volume: 97
  start-page: 1177
  year: 2018
  ident: B80
  article-title: Neural population dynamics underlying motor learning transfer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.040
– volume: 17
  start-page: 312
  year: 2014
  ident: B87
  article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3616
– volume: 52
  start-page: 766
  year: 2010
  ident: B30
  article-title: Can structure predict function in the human brain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.071
– volume: 103
  start-page: 891
  year: 2015
  ident: B23
  article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based brain–computer interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2413993
– volume: 13
  start-page: 130
  year: 2019
  ident: B45
  article-title: Optimizing the performance of the visual p300-speller through active mental tasks based on color distinction and modulation of task difficulty
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2019.00130
– volume: 60
  start-page: 2289
  year: 2013
  ident: B68
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2253608
– volume: 78
  start-page: 252
  year: 1991
  ident: B85
  article-title: An eeg-based brain-computer interface for cursor control
  publication-title: Electroencephal. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(91)90040-B
– volume: 113
  start-page: 14414
  year: 2016
  ident: B72
  article-title: Exploration of joint redundancy but not task space variability facilitates supervised motor learning
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1613383113
– volume: 202
  start-page: 115990
  year: 2019
  ident: B6
  article-title: The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.07.003
– volume: 7
  start-page: 9222
  year: 2017
  ident: B31
  article-title: Brain plasticity following mi-bci training combined with tdcs in a randomized trial in chronic subcortical stroke subjects: a preliminary study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08928-5
– volume: 2
  start-page: 100
  year: 2011
  ident: B35
  article-title: Using brain–computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2011.00100
– volume: 30
  start-page: 3432
  year: 2010
  ident: B11
  article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6107-09.2010
– volume: 57
  start-page: 39
  year: 2014
  ident: B39
  article-title: Bayesian common spatial patterns for multi-subject eeg classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.05.012
– volume: 8
  start-page: 441
  year: 2000
  ident: B61
  article-title: Optimal spatial filtering of single trial eeg during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 15
  start-page: 016009
  year: 2018
  ident: B38
  article-title: Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa8ce3
– volume: 114
  start-page: 438
  year: 2015
  ident: B90
  article-title: Real-time eeg feedback during simultaneous eeg–fmri identifies the cortical signature of motor imagery
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.020
– volume: 160
  start-page: 73
  year: 2017
  ident: B5
  article-title: Multi-scale brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.006
– volume: 11
  start-page: 9
  year: 2014
  ident: B44
  article-title: An exploration of eeg features during recovery following stroke–implications for bci-mediated neurorehabilitation therapy
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-9
SSID ssj0062650
Score 2.5653841
SecondaryResourceType review_article
Snippet Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 87
SubjectTerms Brain
brain computer interface
Computer applications
EEG
Electroencephalography
Implants
inter-subject associativity
Interfaces
Learning
Learning algorithms
Machine learning
Neurophysiology
Neuroscience
Prostheses
Rehabilitation
sensorimotor rhythms
Sensorimotor system
Stroke
Topography
Transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuJgbeJXbC5oF20pSFQIKOotmtgOVGqTso9D_z1jJ9l2K9Trxom8mdf3jSczhLzhdS29KwuG4RkJiquBgbeC1QHjoXSc1yZ-4Pz1SB8eyy8n6mRIuC2HssrRJyZH7TsXc-QTLhAoI_i16sPFXxanRsXT1WGExl2yiy7YIPnanc2Pvn0ffTGidZX3h5NIxeykaWOJCMa82KQyj2V014JR6tn_P6B5s17yWgA6eEDuD8iRTntRPyR3QvuI7E1bZM3nl_QtTbWcKUm-R-BzfASj0Hqacn5sua5jxoX-Qm7ct-a-pKctnc8_sRkGMk9_IJ_F_4uS6xZ0FgdH0HHiQ_-IBlx4T6e0P014TI4P5j8_HrJhmAJzSukV4wW-DGjAy9KqJnfcc6ebgnvRmFIGbb12UksjGyhB5E6roral8lDYIDya6ROy03ZteEZo6T1aei7AIZ5xuQFAWsONM9IKI1WRkcn4Vis3dBqPAy_OKmQcUQ5VkkMV5VAlOWTk3eaOi77Lxi1rZ1FQm3WxP3b6oVv8rgZzq7wIDQD4gjdBFhZqCE6VDrUHHbx3NiP7o5irwWiX1ZWKZeT15jKaWzxDgTZ067hGiTSdTWTkaa8Vm50IngsEVCYj5Za-bG11-0p7-ie19NYWYZMun9--rRfkHo90Py9QnPtkZ7VYh5eIiVb1q0Hx_wEpgA4N
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLiglvJIKchICIlDaOJHHCMhtIu2FKRygUW9RRM_oFKblHRX6v57xk42sGjFiWv8kO3Pk5lvbM8Q8oLVtbBG5SmqZyQopoYUrOZp7VAfCsNYXYYHzqefi5O5-HQmz34_jx4W8HortQv5pObdxeubn6t3KPBvA-NEfXvkm3DxAzVZCD2Zleo2uYN6SQUxPRXjmQJa7jLrDyq3ttpQTDF-_zaj8--7k38oo-Ndcm-wIumkh32P3HLNfbI_aZBBX67oSxrvdUaH-T6Bj6GLlEJjafT_pdfLOnhf6DfkyX2Y7hU9b-hs9iGdolKz9Aty27YLKLYdnYYkEnSd_aHvwoNxb-iE9icLD8j8ePb1_Uk6JFZIjZTFImU5LgZ4sEJp6TPDLDOFz5nlvlTCFdoWRhSiFB4U8MwUMq-1khZy7bhFkX1Idpq2cY8JVdai1GccDNo2JisBkOKw0pRC81LIPCFH61WtzBB1PCS_uKiQfQQcqohDFXCoIg4JeTW2uOojbvyj7jQANdYLsbLjh7b7Xg2iV1nuPADYnHkncg01OCOVQWaIP3trdEIO1zBX6_1XMY6zQK6lZUKej8UoeuE8BRrXLkMdyWOmNp6QR_2uGEfCWcbRuCoTojb2y8ZQN0ua8x8xvHeh0YQq1MH_mNsTcpcFB0GWI-iHZGfRLd1TtKIW9bMoHL8AeA4eMg
  priority: 102
  providerName: Scholars Portal
Title Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/32038208
https://www.proquest.com/docview/2342897495
https://www.proquest.com/docview/2353008313
https://pubmed.ncbi.nlm.nih.gov/PMC6985367
https://doaj.org/article/d3efaaad12fe419abaec57c495538dc9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBQHkESuVKCImDtfErjrntou0DqRUCivYWTWxHrQRZtN099N8ztrOrXYTopZccYseyPTOZ-cbjGULeibZV3hnOUD0jQHEtMPBWsjagPlROiLaOF5zPL6rTS_V5pmdbpb5iTFhOD5w3buRl6ADAc9EFxS20EJw2Du16FFXv0tU91HlrMJX_wWil6zIfSiIEs6Ouj6EhqOticsoyhs9tKaGUq_9fBubfcZJbiuf4CXk8WIx0nGf6lDwI_TOyP-4RLf-6pe9piuFMzvF9AmdxCEah9zT5-tjNqo2eFvoDMXFOyX1Lr3s6nZ6wCSowT78hjp0vIsXmCzqJBSPoutJDHqIDFz7SMc2nCM_J5fH0-6dTNhRRYE7raskEx82ADrwyVnelE164quPCy642KlTWV05VqlYdGJClqzRvrdEeuA3So3i-IHv9vA-vCDXeo4SXEhzaMa6sARDOiNrVyspaaV6Q0XpXGzdkGI-FLn42iDQiHZpEhybSoUl0KMiHzRe_c3aN__SdREJt-sW82OkFckszcEtzF7cU5GBN5mYQ1ptGSFwF4iqrC3K0aUYxi2cn0If5KvbRMlVlkwV5mbliMxMpSomGVF0Qs8MvO1Pdbemvr1Iq78qiuVSZ1_extjfkkYjOgJIj0Q_I3nKxCm_RYlq2h-ThZHrx5ethEhJ8nsw4Ps9V_QdLpRpv
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaBM_khgJoV3YskvbFYIW9WYc24FKkJR9CO2f4jcyzmPpItRbr4ljWZ7xzPeNJzMAT2mec2vSOET3jATF5DrUVrIwd-gPuaE0z_wPzofTZHzM35-Iky343f0L49MqO5tYG2pbGR8j71OGQBnBrxSvz36GvmuUv13tWmg0arHvVr-Qss1fTd6ifJ9Rujc6ejMO264CoREiWYQ0RgyvC215KkURGWqpSYqYWlZkKXeJtInhCc94oVPNIpOIOJepsDqWjlnUV5z3CmxzhlSmB9vD0fTDx87248wiai5DkfrJflH6lBT0sb4oZuTT9s45v7pHwP-A7b_5mecc3t4NuN4iVTJoVOsmbLnyFuwMSmTpP1bkOalzR-ug_A7oiZ8iJLq0pI4xhvNl7iM85DNy8aYU-IqclmQ0ehcO0XFa8gn5M-4vako1I0PfqIJ0HSaaKQpt3EsyIM3txW04vpRtvgO9sirdPSCptWhZIqYN4icTZVojjaKZybhkGRdxAP1uV5VpK5v7BhvfFTIcLwdVy0F5OahaDgG8WH9x1lT1uGDs0AtqPc7X464fVLOvqj3eyjJXaK1tTAvHY6lz7YxIDWorOhRrZAC7nZhVayTm6q9KB_Bk_RqPt7-z0aWrln6MYHU3OBbA3UYr1ithNGII4LIA0g192Vjq5pvy9FtdQjyRCNOS9P7Fy3oMV8dHhwfqYDLdfwDXqA81RDGKdhd6i9nSPUQ8tsgftYeAwJfLPnd_ANCbSno
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QUA5AgWMBEg8RJv4SGIkhHbpLl0Kqwpo1bfg-IBKkJQ9hPav8esY51i6CPWtr4ljWZ4Zz_eNJzMAT2lRcKPTOET3jARFFypURrKwsOgPuaa0yPwPzh-myf4Rf3ciTrbgd_cvjE-r7M7E-qA2lfYx8j5lCJQR_ErRd21axOHe-PXZz9B3kPI3rV07jUZFDuzqF9K3-avJHsr6GaXj0ec3-2HbYSDUQiSLkMaI55VThqdSuEhTQ3XiYmqYy1JuE2kSzROecadSxSKdiLiQqTAqlpYZ1F2c9wpsp8iKoh5sD0fTw4-dH8CZRdRcjCINlH1X-vQU9Le-QGbkU_jOOcK6X8D_QO6_uZrnnN_4BlxvUSsZNGp2E7ZseQt2BiUy9h8r8pzUeaR1gH4H1MRPERJVGlLHG8P5svDRHnKMvLwpC74ipyUZjd6GQ3SihnxCLo37i1pTzcjQN60gXbeJZgqntH1JBqS5ybgNR5eyzXegV1alvQckNQZPmYgpjVhKR5lSSKlopjMuWcZFHEC_29Vct1XOfbON7zmyHS-HvJZD7uWQ13II4MX6i7OmwscFY4deUOtxvjZ3_aCafc1bU88Ns04pZWLqLI-lKpTVItWouehcjJYB7HZiztsDY57_Ve8Anqxfo6n7-xtV2mrpxwhWd4ZjAdxttGK9EkYjhmAuCyDd0JeNpW6-KU-_1eXEE4mQLUnvX7ysx3AV7S1_P5kePIBr1Ecdohgluwu9xWxpHyI0WxSPWhsg8OWyze4PEDtOrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-+and+Inter-subject+Variability+in+EEG-Based+Sensorimotor+Brain+Computer+Interface%3A+A+Review&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Simanto+Saha&rft.au=Mathias+Baumert&rft.date=2020-01-21&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=13&rft_id=info:doi/10.3389%2Ffncom.2019.00087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon