Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability cau...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 13; p. 87 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
21.01.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training. |
---|---|
AbstractList | Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training. Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training. |
Author | Baumert, Mathias Saha, Simanto |
AuthorAffiliation | School of Electrical and Electronic Engineering, The University of Adelaide , Adelaide, SA , Australia |
AuthorAffiliation_xml | – name: School of Electrical and Electronic Engineering, The University of Adelaide , Adelaide, SA , Australia |
Author_xml | – sequence: 1 givenname: Simanto surname: Saha fullname: Saha, Simanto – sequence: 2 givenname: Mathias surname: Baumert fullname: Baumert, Mathias |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32038208$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstrGzEQxpeS0jzae09loZde1tVjpZV6KCTGTQ2BQl9XMZZGqcx65Uq7KfnvK9tJSQI9adB834-PmTmtjoY4YFW9pmTGudLv_WDjZsYI1TNCiOqeVSdUStYIqtTRg_q4Os15TYhkUpAX1TFnhCtG1EkFy2FM0NQwuLqUmJo8rdZox_onpACr0Ifxtg5DvVhcNheQ0dXfcMgxhU0cY6ovEpTmPG62UzEfEB4sfqjP6694E_DPy-q5hz7jq7v3rPrxafF9_rm5-nK5nJ9fNVYIOTaMlnDgwbWdFp5Y5piVnjLHvepalNpJ28pWtR464MRKQVe6Ew6oRu605GfV8sB1EdZmWwJCujURgtl_xHRtII3B9mgcRw8AjjKPLdWwArSis60WgitndWF9PLC202qDzuJuSP0j6OPOEH6Z63hjpFaCy64A3t0BUvw9YR7NJmSLfQ8DxikbxgUvC-OUF-nbJ9J1nNJQRlVULVO6K7mK6s3DRP-i3G-yCORBYFPMOaE3NowwhrgLGHpDidmdjNmfjNmdjNmfTDGSJ8Z79n8tfwHltcTo |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_3389_fnins_2020_00717 crossref_primary_10_1088_1741_2552_ad8b6d crossref_primary_10_3389_fnins_2025_1487175 crossref_primary_10_3390_electronics11152293 crossref_primary_10_1088_1741_2552_ad49d7 crossref_primary_10_1007_s11517_023_02770_w crossref_primary_10_1177_00469580231221285 crossref_primary_10_3390_mti5030012 crossref_primary_10_1016_j_compbiomed_2024_108705 crossref_primary_10_1038_s42003_022_03665_6 crossref_primary_10_7717_peerj_cs_2649 crossref_primary_10_3389_fnins_2021_680938 crossref_primary_10_3390_bioengineering11111111 crossref_primary_10_1155_2023_2793211 crossref_primary_10_1007_s11571_021_09776_w crossref_primary_10_3390_bios12080555 crossref_primary_10_1016_j_heliyon_2023_e13745 crossref_primary_10_1109_ACCESS_2022_3148380 crossref_primary_10_1088_1741_2552_ac39b8 crossref_primary_10_1016_j_autcon_2024_105670 crossref_primary_10_1016_j_neunet_2023_03_039 crossref_primary_10_1080_2326263X_2022_2050513 crossref_primary_10_1088_1741_2552_ad9777 crossref_primary_10_3389_fnrgo_2021_784827 crossref_primary_10_1002_ima_22643 crossref_primary_10_1016_j_neucom_2021_03_038 crossref_primary_10_1088_1741_2552_ad7f8d crossref_primary_10_3389_fnhum_2024_1448584 crossref_primary_10_3389_fnins_2020_568104 crossref_primary_10_1016_j_jneumeth_2022_109736 crossref_primary_10_1016_j_sctalk_2025_100422 crossref_primary_10_3390_s20247250 crossref_primary_10_2196_45405 crossref_primary_10_3389_fnins_2023_1122661 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1016_j_procs_2023_10_419 crossref_primary_10_3390_brainsci12020234 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_3390_app11199218 crossref_primary_10_1007_s10489_022_04077_z crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1016_j_aei_2024_102971 crossref_primary_10_1016_j_eswa_2023_120205 crossref_primary_10_3390_s21061932 crossref_primary_10_3390_brainsci14080832 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_1080_27706710_2022_2120775 crossref_primary_10_26599_BSA_2020_9050021 crossref_primary_10_1109_TNSRE_2022_3167262 crossref_primary_10_2147_ITT_S477841 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_3390_jpm15010010 crossref_primary_10_1016_j_neuroimage_2021_118373 crossref_primary_10_3390_ijerph21111466 crossref_primary_10_1016_j_bspc_2025_107552 crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_1007_s10015_024_00981_4 crossref_primary_10_3389_fnhum_2021_648275 crossref_primary_10_1016_j_bspc_2024_106282 crossref_primary_10_1080_17470919_2023_2278199 crossref_primary_10_1109_TCDS_2023_3279262 crossref_primary_10_1016_j_compbiomed_2021_104969 crossref_primary_10_1139_cjce_2021_0646 crossref_primary_10_1016_j_dcn_2022_101096 crossref_primary_10_1016_j_eswa_2022_118511 crossref_primary_10_3389_fnhum_2021_647908 crossref_primary_10_3390_math10091588 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_1088_1741_2552_ab9a98 crossref_primary_10_1109_ACCESS_2024_3479308 crossref_primary_10_1109_ACCESS_2021_3085865 crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_1186_s42490_024_00080_2 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_1088_1741_2552_acc975 crossref_primary_10_3389_fnhum_2021_732946 crossref_primary_10_3389_frobt_2020_00125 crossref_primary_10_1007_s40815_021_01186_8 crossref_primary_10_1016_j_neucom_2024_127805 crossref_primary_10_1109_TNSRE_2022_3186442 crossref_primary_10_3389_fnhum_2022_951591 crossref_primary_10_3390_biology13100830 crossref_primary_10_3390_app13074438 crossref_primary_10_3389_fnhum_2022_938708 crossref_primary_10_1088_1741_2552_ad3eb5 crossref_primary_10_1109_ACCESS_2020_3035347 crossref_primary_10_1016_j_neubiorev_2021_104520 crossref_primary_10_1109_TBME_2023_3295769 crossref_primary_10_1109_TNSRE_2021_3057938 crossref_primary_10_3389_fpubh_2022_880399 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_3390_app142311208 crossref_primary_10_1109_ACCESS_2024_3452781 crossref_primary_10_1088_1741_2552_acf78a crossref_primary_10_1016_j_compbiomed_2023_107658 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_1145_3705733 crossref_primary_10_1109_TBME_2024_3440036 crossref_primary_10_1109_TNSRE_2023_3265304 crossref_primary_10_3389_fnhum_2022_831995 crossref_primary_10_1109_TIM_2024_3522618 crossref_primary_10_1016_j_chb_2023_107789 crossref_primary_10_1109_ACCESS_2025_3541985 crossref_primary_10_3390_s22176572 crossref_primary_10_1002_hbm_26500 crossref_primary_10_1109_TSMC_2024_3355101 crossref_primary_10_3389_fninf_2022_961089 crossref_primary_10_3390_s22166093 crossref_primary_10_1016_j_bspc_2023_104851 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_1038_s41398_024_02876_1 crossref_primary_10_1142_S0219622022500201 crossref_primary_10_1007_s12124_024_09853_9 crossref_primary_10_1016_j_neunet_2022_03_025 crossref_primary_10_3390_s21082750 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1080_27706710_2023_2285052 crossref_primary_10_1088_1741_2552_ac636a crossref_primary_10_1142_S273748072441005X crossref_primary_10_1109_ACCESS_2024_3432691 crossref_primary_10_3390_computers12070145 crossref_primary_10_3390_s23177520 crossref_primary_10_1371_journal_pone_0268880 crossref_primary_10_3389_fnhum_2023_1194751 crossref_primary_10_3390_s21206710 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_1109_ACCESS_2021_3100638 crossref_primary_10_3389_fnhum_2020_576241 crossref_primary_10_1088_1361_6579_acd51b crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_1109_ACCESS_2023_3247133 crossref_primary_10_3389_fnrgo_2020_602504 |
Cites_doi | 10.1109/MCI.2015.2501545 10.1016/j.clinph.2014.09.032 10.1088/1741-2560/12/6/066024 10.1007/s10548-009-0121-6 10.1002/ana.23879 10.1152/jn.00163.2014 10.1186/1471-2202-10-S1-P84 10.1038/nrn1257. 10.1109/TSMC.2016.2523762 10.1097/01.wco.0000200544.29915.cc 10.1016/j.neuroimage.2015.02.039 10.1371/journal.pone.0207351 10.1038/nn.3633 10.1113/jphysiol.2006.123067 10.1016/j.pneurobio.2010.09.002 10.1007/s10548-014-0364-8 10.1088/1741-2560/12/4/046027 10.1523/JNEUROSCI.2912-18.2019 10.1073/pnas.1817207116 10.1109/LSP.2009.2022557 10.1088/1741-2552/aaaf82 10.1371/journal.pbio.2003787 10.3389/fninf.2019.00047 10.1016/j.pmr.2009.07.003 10.1016/j.neuroimage.2010.03.022 10.1016/j.neuroimage.2015.02.015 10.1038/18581 10.1016/j.tics.2010.01.008 10.1016/j.neuroscience.2016.11.023 10.1016/j.jphysparis.2006.03.012 10.1016/j.neuron.2014.04.048 10.1007/s00221-007-1086-x 10.1109/JTEHM.2018.2875985 10.1016/j.neuroscience.2015.07.043 10.1016/j.jneumeth.2015.01.033 10.1109/TBME.2019.2913914. 10.1007/s11517-012-1018-1 10.1109/TBME.2010.2082540 10.1049/htl.2016.0073 10.1109/TBME.2009.2039997 10.1371/journal.pone.0148886 10.1016/j.neuroimage.2015.01.055 10.1016/j.tins.2015.12.006 10.1088/1741-2552/aaf3f6 10.1073/pnas.1113148109 10.1088/1741-2560/8/2/025002 10.1016/j.tics.2018.03.003 10.1038/s41598-019-43041-9 10.1371/journal.pone.0020422 10.1371/journal.pone.0087056 10.1073/pnas.0811168106 10.1109/JPROC.2015.2404941 10.1371/journal.pone.0143962 10.1053/apmr.2001.24286 10.1523/JNEUROSCI.4366-09.2009 10.1016/0028-3932(95)00073-C 10.1038/nrn2961 10.3389/fnins.2017.00060 10.3389/fnhum.2017.00604 10.1007/s10548-012-0235-0 10.1109/TNSRE.2017.2778178 10.1016/j.neuropsychologia.2017.02.005 10.1016/0013-4694(94)90135-X 10.1126/scirobotics.aaw6844 10.1093/brain/124.11.2268 10.1088/1741-2560/11/3/035011 10.1371/journal.pone.0128456 10.1016/j.biopsycho.2011.09.006 10.1002/hbm.21037 10.1016/j.neuron.2018.01.040 10.1038/nn.3616 10.1016/j.neuroimage.2010.01.071 10.1109/JPROC.2015.2413993 10.3389/fnhum.2019.00130 10.1109/TBME.2013.2253608 10.1016/0013-4694(91)90040-B 10.1073/pnas.1613383113 10.1016/j.neuroimage.2019.07.003 10.1038/s41598-017-08928-5 10.3389/fpsyg.2011.00100 10.1523/JNEUROSCI.6107-09.2010 10.1016/j.neunet.2014.05.012 10.1109/86.895946 10.1088/1741-2552/aa8ce3 10.1016/j.neuroimage.2015.04.020 10.1016/j.neuroimage.2016.11.006 10.1186/1743-0003-11-9 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Saha and Baumert. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Saha and Baumert. 2020 Saha and Baumert |
Copyright_xml | – notice: Copyright © 2020 Saha and Baumert. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Saha and Baumert. 2020 Saha and Baumert |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncom.2019.00087 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9 PMC6985367 32038208 10_3389_fncom_2019_00087 |
Genre | Journal Article Review |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c556t-21626afad4795f0c2d2c6f12d3f874e69d6c46484fa7a30c651b975da19e3d963 |
IEDL.DBID | DOA |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 01:00:26 EDT 2025 Thu Aug 21 18:18:42 EDT 2025 Fri Jul 11 04:35:00 EDT 2025 Fri Jul 25 11:42:36 EDT 2025 Wed Feb 19 02:31:49 EST 2025 Tue Jul 01 02:18:14 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brain computer interface electroencephalography transfer learning inter-subject associativity sensorimotor rhythms |
Language | English |
License | Copyright © 2020 Saha and Baumert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-21626afad4795f0c2d2c6f12d3f874e69d6c46484fa7a30c651b975da19e3d963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Chun-Shu Wei, National Chiao Tung University, Taiwan Reviewed by: Bradley Jay Edelman, School of Medicine, Stanford University, United States; Po-Chih Kuo, Massachusetts Institute of Technology, United States; Yu-Kai Wang, University of Technology Sydney, Australia |
OpenAccessLink | https://doaj.org/article/d3efaaad12fe419abaec57c495538dc9 |
PMID | 32038208 |
PQID | 2342897495 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985367 proquest_miscellaneous_2353008313 proquest_journals_2342897495 pubmed_primary_32038208 crossref_citationtrail_10_3389_fncom_2019_00087 crossref_primary_10_3389_fncom_2019_00087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-21 |
PublicationDateYYYYMMDD | 2020-01-21 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationTitleAlternate | Front Comput Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Leamy (B44) 2014; 11 Singh (B72) 2016; 113 Perdikis (B58) 2018; 16 Wang (B81) 2010; 21 Kasahara (B41) 2015; 110 Clarke (B14) 1999 Fox (B24) 2015; 111 Suk (B74) 2014; 9 Darvishi (B15) 2017; 11 Duarte (B19) 2015; 113 Saha (B67) 2019; 13 Hebb (B27) 1949 Wu (B87) 2014; 17 Acqualagna (B1) 2016; 11 Meyer (B51) 2013; 26 Zhao (B89) 2016; 46 Seghier (B70) 2018; 22 Lu (B50) 2010; 57 Orsborn (B56) 2014; 82 Samek (B68) 2013; 60 Wolpaw (B85) 1991; 78 Müller-Putz (B53) 2014; 11 Jochumsen (B37) 2017; 11 Wang (B82) 2011; 6 Edelman (B20) 2019; 4 Lotte (B47) 2015; 103 Brown (B12) 2003; 4 Reichert (B63) 2015; 126 Blankertz (B9) 2009; 10 Kang (B39) 2014; 57 Wolpaw (B84) 1994; 90 Jayaram (B33) 2016; 11 Ramoser (B61) 2000; 8 Chiarelli (B13) 2018; 15 Ahn (B2) 2015; 243 Niazi (B54) 2013; 51 Herzfeld (B28) 2014; 17 Lotze (B48) 2001; 124 Ruffino (B64) 2017; 341 Deco (B17) 2011; 12 Vyas (B80) 2018; 97 Ostry (B57) 2016; 39 Hong (B31) 2017; 7 Lotze (B49) 2006; 99 Blankertz (B10) 2010; 51 Li (B45) 2019; 13 Saha (B66); 26 He (B26) 2019 Jeannerod (B34) 1995; 33 Hammer (B25) 2012; 89 Jackson (B32) 2001; 82 Baldassarre (B4) 2012; 109 Johnson (B38) 2018; 15 Smith (B73) 2019; 39 Wronkiewicz (B86) 2015; 12 Faller (B22) 2019; 116 Raichle (B59) 2009; 29 Betzel (B6) 2019; 202 Sannelli (B69) 2019; 14 Birbaumer (B7) 1999; 398 Úbeda (B76) 2015; 10 Allami (B3) 2008; 184 Tomassini (B75) 2011; 32 Krusienski (B43) 2011; 8 Vallence (B77) 2015; 304 Zich (B90) 2015; 114 Fahimi (B21) 2018; 16 Betzel (B5) 2017; 160 Vidaurre (B79) 2010; 23 Blankertz (B8) 2002 Honey (B29) 2009; 106 Selfslagh (B71) 2019; 9 Krakauer (B42) 2006; 19 Dobkin (B18) 2007; 579 Ramos-Murguialday (B62) 2013; 74 Li (B46) 2010; 57 Morioka (B52) 2015; 111 Jeunet (B36) 2015; 10 Northoff (B55) 2010; 92 Fazli (B23) 2015; 103 Zhang (B88) 2015; 12 Darvishi (B16) 2018; 6 Wens (B83) 2014; 27 Raichle (B60) 2010; 14 Honey (B30) 2010; 52 Bradberry (B11) 2010; 30 Saha (B65); 4 Vasilyev (B78) 2017; 97 Jensen (B35) 2011; 2 Kang (B40) 2009; 16 |
References_xml | – volume: 11 start-page: 20 year: 2016 ident: B33 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Magaz. doi: 10.1109/MCI.2015.2501545 – volume: 126 start-page: 2068 year: 2015 ident: B63 article-title: Resting-state sensorimotor rhythm (smr) power predicts the ability to up-regulate smr in an eeg-instrumental conditioning paradigm publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.09.032 – volume: 12 start-page: 066024 year: 2015 ident: B88 article-title: Efficient resting-state eeg network facilitates motor imagery performance publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/6/066024 – volume: 23 start-page: 194 year: 2010 ident: B79 article-title: Towards a cure for bci illiteracy publication-title: Brain Topography doi: 10.1007/s10548-009-0121-6 – volume: 74 start-page: 100 year: 2013 ident: B62 article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 113 start-page: 2682 year: 2015 ident: B19 article-title: Effects of robotically modulating kinematic variability on motor skill learning and motivation publication-title: J. Neurophysiol. doi: 10.1152/jn.00163.2014 – volume: 10 start-page: P84 year: 2009 ident: B9 article-title: Predicting bci performance to study bci illiteracy publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-S1-P84 – volume: 4 start-page: 1013 year: 2003 ident: B12 article-title: The legacy of donald o. hebb: more than the hebb synapse publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1257. – volume: 46 start-page: 947 year: 2016 ident: B89 article-title: Ssvep-based brain–computer interface controlled functional electrical stimulation system for upper extremity rehabilitation publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMC.2016.2523762 – volume: 19 start-page: 84 year: 2006 ident: B42 article-title: Motor learning: its relevance to stroke recovery and neurorehabilitation publication-title: Curr. Opin. Neurol. doi: 10.1097/01.wco.0000200544.29915.cc – volume: 111 start-page: 611 year: 2015 ident: B24 article-title: The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.039 – volume: 14 start-page: e0207351 year: 2019 ident: B69 article-title: A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity publication-title: PLoS ONE doi: 10.1371/journal.pone.0207351 – volume: 17 start-page: 149 year: 2014 ident: B28 article-title: Motor variability is not noise, but grist for the learning mill publication-title: Nat. Neurosci. doi: 10.1038/nn.3633 – start-page: 637 volume-title: Basic Neurochemistry: Molecular, Cellular, and Medical Aspects year: 1999 ident: B14 article-title: Circulation and energy metabolism of the brain, – volume: 579 start-page: 637 year: 2007 ident: B18 article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.123067 – volume: 92 start-page: 593 year: 2010 ident: B55 article-title: The brain and its resting state activity-experimental and methodological implications publication-title: Progress Neurobiol. doi: 10.1016/j.pneurobio.2010.09.002 – volume: 27 start-page: 620 year: 2014 ident: B83 article-title: Inter-and intra-subject variability of neuromagnetic resting state networks publication-title: Brain Topography doi: 10.1007/s10548-014-0364-8 – volume: 12 start-page: 046027 year: 2015 ident: B86 article-title: Leveraging anatomical information to improve transfer learning in brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046027 – volume: 39 start-page: 6136 year: 2019 ident: B73 article-title: Structural variability in the human brain reflects fine-grained functional architecture at the population level publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2912-18.2019 – volume: 116 start-page: 6482 year: 2019 ident: B22 article-title: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1817207116 – volume: 16 start-page: 683 year: 2009 ident: B40 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2022557 – volume: 15 start-page: 036028 year: 2018 ident: B13 article-title: Deep learning for hybrid eeg-fnirs brain–computer interface: application to motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaaf82 – volume: 16 start-page: e2003787 year: 2018 ident: B58 article-title: The cybathlon bci race: successful longitudinal mutual learning with two tetraplegic users publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003787 – volume: 13 start-page: 47 year: 2019 ident: B67 article-title: Wavelet entropy-based inter-subject associative cortical source localization for sensorimotor BCI publication-title: Front. Neuroinform. doi: 10.3389/fninf.2019.00047 – volume: 21 start-page: 157 year: 2010 ident: B81 article-title: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity publication-title: Phys. Med. Rehabil. Clinics doi: 10.1016/j.pmr.2009.07.003 – volume: 51 start-page: 1303 year: 2010 ident: B10 article-title: Neurophysiological predictor of smr-based bci performance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.022 – volume: 111 start-page: 167 year: 2015 ident: B52 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.015 – volume: 398 start-page: 297 year: 1999 ident: B7 article-title: A spelling device for the paralysed publication-title: Nature doi: 10.1038/18581 – volume: 14 start-page: 180 year: 2010 ident: B60 article-title: Two views of brain function publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2010.01.008 – volume: 341 start-page: 61 year: 2017 ident: B64 article-title: Neural plasticity during motor learning with motor imagery practice: Review and perspectives publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.11.023 – volume: 99 start-page: 386 year: 2006 ident: B49 article-title: Motor imagery publication-title: J. Physiol. Paris doi: 10.1016/j.jphysparis.2006.03.012 – volume: 82 start-page: 1380 year: 2014 ident: B56 article-title: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control publication-title: Neuron doi: 10.1016/j.neuron.2014.04.048 – volume: 184 start-page: 105 year: 2008 ident: B3 article-title: Visuo-motor learning with combination of different rates of motor imagery and physical practice publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-1086-x – volume: 6 start-page: 1 year: 2018 ident: B16 article-title: Reaction time predicts brain–computer interface aptitude publication-title: IEEE J. Trans. Eng. Health Med. doi: 10.1109/JTEHM.2018.2875985 – volume: 304 start-page: 266 year: 2015 ident: B77 article-title: Inter-and intra-subject variability of motor cortex plasticity following continuous theta-burst stimulation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.07.043 – volume: 243 start-page: 103 year: 2015 ident: B2 article-title: Performance variation in motor imagery brain–computer interface: a brief review publication-title: J. Neuroscience Methods doi: 10.1016/j.jneumeth.2015.01.033 – year: 2019 ident: B26 article-title: Transfer learning for brain-computer interfaces: a euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2019.2913914. – volume: 51 start-page: 507 year: 2013 ident: B54 article-title: Detection of movement-related cortical potentials based on subject-independent training publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-1018-1 – volume: 57 start-page: 2936 year: 2010 ident: B50 article-title: Regularized common spatial pattern with aggregation for eeg classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082540 – volume: 4 start-page: 39 ident: B65 article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations publication-title: Healthcare Technol. Lett. doi: 10.1049/htl.2016.0073 – volume: 57 start-page: 1318 year: 2010 ident: B46 article-title: Application of covariate shift adaptation techniques in brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2039997 – volume: 11 start-page: e0148886 year: 2016 ident: B1 article-title: Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface publication-title: PLoS ONE doi: 10.1371/journal.pone.0148886 – volume: 110 start-page: 95 year: 2015 ident: B41 article-title: Neuroanatomical correlates of brain–computer interface performance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.055 – volume: 39 start-page: 114 year: 2016 ident: B57 article-title: Sensory plasticity in human motor learning publication-title: Trends Neurosci. doi: 10.1016/j.tins.2015.12.006 – volume: 16 start-page: 026007 year: 2018 ident: B21 article-title: Inter-subject transfer learning with end-to-end deep convolutional neural network for eeg-based bci publication-title: J. Neural Eng doi: 10.1088/1741-2552/aaf3f6 – volume: 109 start-page: 3516 year: 2012 ident: B4 article-title: Individual variability in functional connectivity predicts performance of a perceptual task publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113148109 – volume: 8 start-page: 025002 year: 2011 ident: B43 article-title: Critical issues in state-of-the-art brain–computer interface signal processing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025002 – volume: 22 start-page: 517 year: 2018 ident: B70 article-title: Interpreting and utilising intersubject variability in brain function publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2018.03.003 – volume: 9 start-page: 6782 year: 2019 ident: B71 article-title: Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia publication-title: Sci. Rep. doi: 10.1038/s41598-019-43041-9 – volume: 6 start-page: e20422 year: 2011 ident: B82 article-title: A collaborative brain-computer interface for improving human performance publication-title: PLoS ONE doi: 10.1371/journal.pone.0020422 – volume: 9 start-page: e87056 year: 2014 ident: B74 article-title: Predicting BCI subject performance using probabilistic spatio-temporal filters publication-title: PLoS ONE doi: 10.1371/journal.pone.0087056 – volume: 106 start-page: 2035 year: 2009 ident: B29 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811168106 – volume: 103 start-page: 871 year: 2015 ident: B47 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2404941 – volume: 10 start-page: e0143962 year: 2015 ident: B36 article-title: Predicting mental imagery-based bci performance from personality, cognitive profile and neurophysiological patterns publication-title: PLoS ONE doi: 10.1371/journal.pone.0143962 – volume: 82 start-page: 1133 year: 2001 ident: B32 article-title: Potential role of mental practice using motor imagery in neurologic rehabilitation publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.24286 – volume: 29 start-page: 12729 year: 2009 ident: B59 article-title: A paradigm shift in functional brain imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4366-09.2009 – start-page: 157 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: B8 article-title: Classifying single trial eeg: towards brain computer interfacing, – volume: 33 start-page: 1419 year: 1995 ident: B34 article-title: Mental imagery in the motor context publication-title: Neuropsychologia doi: 10.1016/0028-3932(95)00073-C – volume: 12 start-page: 43 year: 2011 ident: B17 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – volume: 11 start-page: 60 year: 2017 ident: B15 article-title: Proprioceptive feedback facilitates motor imagery-related operant learning of sensorimotor β-band modulation publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00060 – volume: 11 start-page: 604 year: 2017 ident: B37 article-title: Quantification of movement-related eeg correlates associated with motor training: a study on movement-related cortical potentials and sensorimotor rhythms publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00604 – volume: 26 start-page: 98 year: 2013 ident: B51 article-title: Electrophysiological correlation patterns of resting state networks in single subjects: a combined eeg–fmri study publication-title: Brain Topography doi: 10.1007/s10548-012-0235-0 – volume: 26 start-page: 371 ident: B66 article-title: Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2778178 – volume: 97 start-page: 56 year: 2017 ident: B78 article-title: Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.02.005 – volume: 90 start-page: 444 year: 1994 ident: B84 article-title: Multichannel eeg-based brain-computer communication publication-title: Electroencephal. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90135-X – volume: 4 start-page: eaaw6844 year: 2019 ident: B20 article-title: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaw6844 – volume: 124 start-page: 2268 year: 2001 ident: B48 article-title: Phantom movements and pain an fmri study in upper limb amputees publication-title: Brain doi: 10.1093/brain/124.11.2268 – volume: 11 start-page: 035011 year: 2014 ident: B53 article-title: Motor imagery-induced eeg patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035011 – volume: 10 start-page: e0128456 year: 2015 ident: B76 article-title: Assessing movement factors in upper limb kinematics decoding from eeg signals publication-title: PLoS ONE doi: 10.1371/journal.pone.0128456 – volume: 89 start-page: 80 year: 2012 ident: B25 article-title: Psychological predictors of smr-bci performance publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2011.09.006 – volume-title: The Organization of Behavior, Vol. 65. year: 1949 ident: B27 – volume: 32 start-page: 494 year: 2011 ident: B75 article-title: Structural and functional bases for individual differences in motor learning publication-title: Human Brain Mapp. doi: 10.1002/hbm.21037 – volume: 97 start-page: 1177 year: 2018 ident: B80 article-title: Neural population dynamics underlying motor learning transfer publication-title: Neuron doi: 10.1016/j.neuron.2018.01.040 – volume: 17 start-page: 312 year: 2014 ident: B87 article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability publication-title: Nat. Neurosci. doi: 10.1038/nn.3616 – volume: 52 start-page: 766 year: 2010 ident: B30 article-title: Can structure predict function in the human brain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.071 – volume: 103 start-page: 891 year: 2015 ident: B23 article-title: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based brain–computer interfaces publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2413993 – volume: 13 start-page: 130 year: 2019 ident: B45 article-title: Optimizing the performance of the visual p300-speller through active mental tasks based on color distinction and modulation of task difficulty publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2019.00130 – volume: 60 start-page: 2289 year: 2013 ident: B68 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2253608 – volume: 78 start-page: 252 year: 1991 ident: B85 article-title: An eeg-based brain-computer interface for cursor control publication-title: Electroencephal. Clin. Neurophysiol. doi: 10.1016/0013-4694(91)90040-B – volume: 113 start-page: 14414 year: 2016 ident: B72 article-title: Exploration of joint redundancy but not task space variability facilitates supervised motor learning publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1613383113 – volume: 202 start-page: 115990 year: 2019 ident: B6 article-title: The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.07.003 – volume: 7 start-page: 9222 year: 2017 ident: B31 article-title: Brain plasticity following mi-bci training combined with tdcs in a randomized trial in chronic subcortical stroke subjects: a preliminary study publication-title: Sci. Rep. doi: 10.1038/s41598-017-08928-5 – volume: 2 start-page: 100 year: 2011 ident: B35 article-title: Using brain–computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00100 – volume: 30 start-page: 3432 year: 2010 ident: B11 article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6107-09.2010 – volume: 57 start-page: 39 year: 2014 ident: B39 article-title: Bayesian common spatial patterns for multi-subject eeg classification publication-title: Neural Networks doi: 10.1016/j.neunet.2014.05.012 – volume: 8 start-page: 441 year: 2000 ident: B61 article-title: Optimal spatial filtering of single trial eeg during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 15 start-page: 016009 year: 2018 ident: B38 article-title: Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa8ce3 – volume: 114 start-page: 438 year: 2015 ident: B90 article-title: Real-time eeg feedback during simultaneous eeg–fmri identifies the cortical signature of motor imagery publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.020 – volume: 160 start-page: 73 year: 2017 ident: B5 article-title: Multi-scale brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.006 – volume: 11 start-page: 9 year: 2014 ident: B44 article-title: An exploration of eeg features during recovery following stroke–implications for bci-mediated neurorehabilitation therapy publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-9 |
SSID | ssj0062650 |
Score | 2.5653841 |
SecondaryResourceType | review_article |
Snippet | Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 87 |
SubjectTerms | Brain brain computer interface Computer applications EEG Electroencephalography Implants inter-subject associativity Interfaces Learning Learning algorithms Machine learning Neurophysiology Neuroscience Prostheses Rehabilitation sensorimotor rhythms Sensorimotor system Stroke Topography Transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuJgbeJXbC5oF20pSFQIKOotmtgOVGqTso9D_z1jJ9l2K9Trxom8mdf3jSczhLzhdS29KwuG4RkJiquBgbeC1QHjoXSc1yZ-4Pz1SB8eyy8n6mRIuC2HssrRJyZH7TsXc-QTLhAoI_i16sPFXxanRsXT1WGExl2yiy7YIPnanc2Pvn0ffTGidZX3h5NIxeykaWOJCMa82KQyj2V014JR6tn_P6B5s17yWgA6eEDuD8iRTntRPyR3QvuI7E1bZM3nl_QtTbWcKUm-R-BzfASj0Hqacn5sua5jxoX-Qm7ct-a-pKctnc8_sRkGMk9_IJ_F_4uS6xZ0FgdH0HHiQ_-IBlx4T6e0P014TI4P5j8_HrJhmAJzSukV4wW-DGjAy9KqJnfcc6ebgnvRmFIGbb12UksjGyhB5E6roral8lDYIDya6ROy03ZteEZo6T1aei7AIZ5xuQFAWsONM9IKI1WRkcn4Vis3dBqPAy_OKmQcUQ5VkkMV5VAlOWTk3eaOi77Lxi1rZ1FQm3WxP3b6oVv8rgZzq7wIDQD4gjdBFhZqCE6VDrUHHbx3NiP7o5irwWiX1ZWKZeT15jKaWzxDgTZ067hGiTSdTWTkaa8Vm50IngsEVCYj5Za-bG11-0p7-ie19NYWYZMun9--rRfkHo90Py9QnPtkZ7VYh5eIiVb1q0Hx_wEpgA4N priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLiglvJIKchICIlDaOJHHCMhtIu2FKRygUW9RRM_oFKblHRX6v57xk42sGjFiWv8kO3Pk5lvbM8Q8oLVtbBG5SmqZyQopoYUrOZp7VAfCsNYXYYHzqefi5O5-HQmz34_jx4W8HortQv5pObdxeubn6t3KPBvA-NEfXvkm3DxAzVZCD2Zleo2uYN6SQUxPRXjmQJa7jLrDyq3ttpQTDF-_zaj8--7k38oo-Ndcm-wIumkh32P3HLNfbI_aZBBX67oSxrvdUaH-T6Bj6GLlEJjafT_pdfLOnhf6DfkyX2Y7hU9b-hs9iGdolKz9Aty27YLKLYdnYYkEnSd_aHvwoNxb-iE9icLD8j8ePb1_Uk6JFZIjZTFImU5LgZ4sEJp6TPDLDOFz5nlvlTCFdoWRhSiFB4U8MwUMq-1khZy7bhFkX1Idpq2cY8JVdai1GccDNo2JisBkOKw0pRC81LIPCFH61WtzBB1PCS_uKiQfQQcqohDFXCoIg4JeTW2uOojbvyj7jQANdYLsbLjh7b7Xg2iV1nuPADYnHkncg01OCOVQWaIP3trdEIO1zBX6_1XMY6zQK6lZUKej8UoeuE8BRrXLkMdyWOmNp6QR_2uGEfCWcbRuCoTojb2y8ZQN0ua8x8xvHeh0YQq1MH_mNsTcpcFB0GWI-iHZGfRLd1TtKIW9bMoHL8AeA4eMg priority: 102 providerName: Scholars Portal |
Title | Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32038208 https://www.proquest.com/docview/2342897495 https://www.proquest.com/docview/2353008313 https://pubmed.ncbi.nlm.nih.gov/PMC6985367 https://doaj.org/article/d3efaaad12fe419abaec57c495538dc9 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBQHkESuVKCImDtfErjrntou0DqRUCivYWTWxHrQRZtN099N8ztrOrXYTopZccYseyPTOZ-cbjGULeibZV3hnOUD0jQHEtMPBWsjagPlROiLaOF5zPL6rTS_V5pmdbpb5iTFhOD5w3buRl6ADAc9EFxS20EJw2Du16FFXv0tU91HlrMJX_wWil6zIfSiIEs6Ouj6EhqOticsoyhs9tKaGUq_9fBubfcZJbiuf4CXk8WIx0nGf6lDwI_TOyP-4RLf-6pe9piuFMzvF9AmdxCEah9zT5-tjNqo2eFvoDMXFOyX1Lr3s6nZ6wCSowT78hjp0vIsXmCzqJBSPoutJDHqIDFz7SMc2nCM_J5fH0-6dTNhRRYE7raskEx82ADrwyVnelE164quPCy642KlTWV05VqlYdGJClqzRvrdEeuA3So3i-IHv9vA-vCDXeo4SXEhzaMa6sARDOiNrVyspaaV6Q0XpXGzdkGI-FLn42iDQiHZpEhybSoUl0KMiHzRe_c3aN__SdREJt-sW82OkFckszcEtzF7cU5GBN5mYQ1ptGSFwF4iqrC3K0aUYxi2cn0If5KvbRMlVlkwV5mbliMxMpSomGVF0Qs8MvO1Pdbemvr1Iq78qiuVSZ1_extjfkkYjOgJIj0Q_I3nKxCm_RYlq2h-ThZHrx5ethEhJ8nsw4Ps9V_QdLpRpv |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaBM_khgJoV3YskvbFYIW9WYc24FKkJR9CO2f4jcyzmPpItRbr4ljWZ7xzPeNJzMAT2mec2vSOET3jATF5DrUVrIwd-gPuaE0z_wPzofTZHzM35-Iky343f0L49MqO5tYG2pbGR8j71OGQBnBrxSvz36GvmuUv13tWmg0arHvVr-Qss1fTd6ifJ9Rujc6ejMO264CoREiWYQ0RgyvC215KkURGWqpSYqYWlZkKXeJtInhCc94oVPNIpOIOJepsDqWjlnUV5z3CmxzhlSmB9vD0fTDx87248wiai5DkfrJflH6lBT0sb4oZuTT9s45v7pHwP-A7b_5mecc3t4NuN4iVTJoVOsmbLnyFuwMSmTpP1bkOalzR-ug_A7oiZ8iJLq0pI4xhvNl7iM85DNy8aYU-IqclmQ0ehcO0XFa8gn5M-4vako1I0PfqIJ0HSaaKQpt3EsyIM3txW04vpRtvgO9sirdPSCptWhZIqYN4icTZVojjaKZybhkGRdxAP1uV5VpK5v7BhvfFTIcLwdVy0F5OahaDgG8WH9x1lT1uGDs0AtqPc7X464fVLOvqj3eyjJXaK1tTAvHY6lz7YxIDWorOhRrZAC7nZhVayTm6q9KB_Bk_RqPt7-z0aWrln6MYHU3OBbA3UYr1ithNGII4LIA0g192Vjq5pvy9FtdQjyRCNOS9P7Fy3oMV8dHhwfqYDLdfwDXqA81RDGKdhd6i9nSPUQ8tsgftYeAwJfLPnd_ANCbSno |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QUA5AgWMBEg8RJv4SGIkhHbpLl0Kqwpo1bfg-IBKkJQ9hPav8esY51i6CPWtr4ljWZ4Zz_eNJzMAT2lRcKPTOET3jARFFypURrKwsOgPuaa0yPwPzh-myf4Rf3ciTrbgd_cvjE-r7M7E-qA2lfYx8j5lCJQR_ErRd21axOHe-PXZz9B3kPI3rV07jUZFDuzqF9K3-avJHsr6GaXj0ec3-2HbYSDUQiSLkMaI55VThqdSuEhTQ3XiYmqYy1JuE2kSzROecadSxSKdiLiQqTAqlpYZ1F2c9wpsp8iKoh5sD0fTw4-dH8CZRdRcjCINlH1X-vQU9Le-QGbkU_jOOcK6X8D_QO6_uZrnnN_4BlxvUSsZNGp2E7ZseQt2BiUy9h8r8pzUeaR1gH4H1MRPERJVGlLHG8P5svDRHnKMvLwpC74ipyUZjd6GQ3SihnxCLo37i1pTzcjQN60gXbeJZgqntH1JBqS5ybgNR5eyzXegV1alvQckNQZPmYgpjVhKR5lSSKlopjMuWcZFHEC_29Vct1XOfbON7zmyHS-HvJZD7uWQ13II4MX6i7OmwscFY4deUOtxvjZ3_aCafc1bU88Ns04pZWLqLI-lKpTVItWouehcjJYB7HZiztsDY57_Ve8Anqxfo6n7-xtV2mrpxwhWd4ZjAdxttGK9EkYjhmAuCyDd0JeNpW6-KU-_1eXEE4mQLUnvX7ysx3AV7S1_P5kePIBr1Ecdohgluwu9xWxpHyI0WxSPWhsg8OWyze4PEDtOrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-+and+Inter-subject+Variability+in+EEG-Based+Sensorimotor+Brain+Computer+Interface%3A+A+Review&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Simanto+Saha&rft.au=Mathias+Baumert&rft.date=2020-01-21&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=13&rft_id=info:doi/10.3389%2Ffncom.2019.00087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d3efaaad12fe419abaec57c495538dc9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |