l‐(−)‐Desmethylselegiline, a Metabolite of Selegiline [l‐(−)‐Deprenyl], Protects Mesencephalic Dopamine Neurons from Excitotoxicity In Vitro

: Selegiline [l‐(−)‐deprenyl], a monoamine oxidase B inhibitor, has been used in the treatment of Parkinson's disease as a putative neuroprotective agent. Selegiline is metabolized rapidly in the gastrointestinal tract and liver to desmethylselegiline (DMS) and methamphetamine. We have previous...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 68; no. 1; pp. 434 - 436
Main Authors Mytilineou, Catherine, Radcliffe, Pheona M., Olanow, C. Warren
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.01.1997
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:: Selegiline [l‐(−)‐deprenyl], a monoamine oxidase B inhibitor, has been used in the treatment of Parkinson's disease as a putative neuroprotective agent. Selegiline is metabolized rapidly in the gastrointestinal tract and liver to desmethylselegiline (DMS) and methamphetamine. We have previously shown that selegiline protects dopamine neurons in mesencephalic cultures from toxicity resulting from activation of glutamate receptors. In the present study we examined whether DMS has similar neuroprotective effects. Our data show that DMS protects dopamine neurons from N‐methyl‐d‐aspartate receptor‐mediated excitotoxic damage. The efficacy of DMS is greater than that of selegiline, as it can cause protection at lower concentrations and provide significantly greater levels of protection at the same concentrations. Our results suggest that DMS might be the active compound responsible for the neuroprotective properties of selegiline.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-3042
1471-4159
DOI:10.1046/j.1471-4159.1997.68010434.x