Engineering of Sialylated Mucin-type O-Glycosylation in Plants

Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked g...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 43; pp. 36518 - 36526
Main Authors Castilho, Alexandra, Neumann, Laura, Daskalova, Sasha, Mason, Hugh S., Steinkellner, Herta, Altmann, Friedrich, Strasser, Richard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.10.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics. Background: Plants lack the machinery for mucin-type O-glycosylation. Results: Transient expression of the mammalian O-glycosylation pathway in Nicotiana benthamiana resulted in the formation of sialylated mucin-type O-glycans on recombinant erythropoietin. Conclusion: Therapeutic proteins with engineered N- and O-glycosylation can be produced in plants. Significance: Plants are attractive hosts for the production of glycosylated recombinant proteins with defined glycan structures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.402685