Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion
Although solar-driven water splitting on semiconductor photocatalysts is an attractive route for hydrogen generation, there is a lack of excellent photocatalysts with high visible light activity. Due to their tunable bandgaps suitable for superior visible-light absorption, copper-based quaternary su...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5194 - 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.10.2020
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although solar-driven water splitting on semiconductor photocatalysts is an attractive route for hydrogen generation, there is a lack of excellent photocatalysts with high visible light activity. Due to their tunable bandgaps suitable for superior visible-light absorption, copper-based quaternary sulfides have been the important candidates. Here, we first assessed the preferred facet of wurtzite Cu-Zn-In-S for photocatalytic hydrogen evolution reaction using the relevant Gibbs free energies determined by first principle calculation. We then developed a colloidal method to synthesize single crystalline wurtzite Cu-Zn-In-S nanobelts (NBs) exposing (0001) facet with the lowest reaction Gibbs energy, as well as Cu-Zn-Ga-S NBs exposing (0001) facet. The obtained single crystalline Cu-Zn-In-S and Cu-Zn-Ga-S NBs exhibit superior hydrogen production activities under visible-light irradiation, which is composition-dependent. Our protocol represents an alternative surface engineering approach to realize efficient solar-to-chemical conversion of single crystalline copper-based multinary chalcogenides.
Quaternary sulfides are important candidates for solar-to-H
2
conversion due to tunable bandgaps for controllable light absorption. Here, authors prepare single crystalline wurtzite Cu-Zn-In-S and Cu-Zn-Ga-S nanobelts with (0001) facets that show strong photocatalytic H
2
production performances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-18679-z |