Identification of a Pair of Phospholipid:Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) Seed Catalyzing the Selective Production of Trilinolenin

The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently tran...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 33; pp. 24173 - 24188
Main Authors Pan, Xue, Siloto, Rodrigo M.P., Wickramarathna, Aruna D., Mietkiewska, Elzbieta, Weselake, Randall J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.08.2013
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications. Background: Triacylglycerol (TAG) can be formed via an acyl-CoA-dependent or acyl-CoA-independent pathway. Results: Overexpressing particular flax phospholipid:diacylglycerol acyltransferase (PDAT) genes in yeast and Arabidopsis resulted in an enhanced proportion of α-linolenic acid (ALA) in TAG. Conclusion: Certain PDATs have the unique ability to efficiently channel ALA into TAG. Significance: The identified PDATs will benefit future projects aimed at producing oils with enhanced polyunsaturated fatty acid content.
Bibliography:Recipient of the Alberta Innovates Graduate Student Scholarship.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.475699