Determining relationships and mechanisms between tropospheric ozone column concentrations and tropical biomass burning in Thailand and its surrounding regions

This study aims to determine the variability and trends of tropical biomass burning, tropospheric ozone levels from 2005-2012 in Thailand and the ozone transport from the surrounding regions. Intense biomass burning and tropospheric ozone in this area have a seasonal variability with the maximum gen...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research letters Vol. 10; no. 6; pp. 65009 - 65018
Main Authors Sonkaew, Thiranan, Macatangay, Ronald
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aims to determine the variability and trends of tropical biomass burning, tropospheric ozone levels from 2005-2012 in Thailand and the ozone transport from the surrounding regions. Intense biomass burning and tropospheric ozone in this area have a seasonal variability with the maximum generally occurring during the dry season. The northern part of Thailand was observed to have high tropospheric ozone during the dry peak season in April. Forward trajectory analysis determined that ozone sources due to biomass burning in the northern and western surrounding regions (Myanmar, Laos and India) enhance the tropospheric ozone column in northern Thailand. Seasonal variations were also seen for the middle and northeastern regions of Thailand. During August, most biomass burning occurs in Indonesia and Malaysia. However, forward trajectory analysis showed that the effect in the tropospheric ozone column level in the southern part of Thailand is minimal from these regions. Eight-year trends of tropospheric ozone column were also calculated for the different regions of Thailand. However, statistical analysis showed that these trends were not significant. The interannual variability of the tropospheric ozone column concentrations due to El Niño Southern Oscillation were also investigated. It was observed that the best correlation of the tropospheric ozone column with the Oceanic Niño Index (ONI) occured when ONI was advanced 3 months for the north, northeast and south regions of Thailand and 4 months for the middle region of Thailand.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/10/6/065009