Development and validation of a lead emission inventory for the Greater Cairo area
Studies that investigate the environmental health risks to Cairo residents invariably conclude that lead is one of the area’s major health hazards. The Cairo Air Improvement Project (CAIP), which was implemented by a team led by Chemonics International, funded by USAID in partnership with the Egypti...
Saved in:
Published in | Journal of advanced research Vol. 5; no. 5; pp. 551 - 562 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Studies that investigate the environmental health risks to Cairo residents invariably conclude that lead is one of the area’s major health hazards. The Cairo Air Improvement Project (CAIP), which was implemented by a team led by Chemonics International, funded by USAID in partnership with the Egyptian Environmental Affairs Agency (EEAA), started developing a lead emission inventory for the greater Cairo (GC) area in 1998. The inventory contains a list by major source of the annual lead emissions in the GC area. Uses of the inventory and associated database include developing effective regulatory and control strategies, assessing emissions trends, and conducting modeling exercises. This paper describes the development of the current lead emissions inventory (1999–2010), along with an approach to develop site specific emission factors and measurements to validate the inventory. This paper discusses the major sources of lead in the GC area, which include lead smelters, Mazout (heavy fuel oil) combustion, lead manufacturing batteries factories, copper foundries, and cement factories. Included will be the trend in the lead emissions inventory with regard to the production capacity of each source category. In addition, the lead ambient measurements from 1999 through 2010 are described and compared with the results of Source Attribution Studies (SAS) conducted in 1999, 2002, and 2010. Due to EEAA/CAIP efforts, a remarkable decrease in more than 90% in lead emissions was attained for 2007. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2090-1232 2090-1224 |
DOI: | 10.1016/j.jare.2013.07.003 |