Mechanical Response of Epoxy Resin-Flax Fiber Composites Subjected to Repeated Loading and Creep Recovery Tests

Flax fiber-reinforced plastics have an innate eco-friendly nature due to the fiber reinforcement and reduced energy requirements in fabrication when compared to current fiber reinforced composite materials. They possess a complex time-dependent material behavior, which is investigated in the present...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 3; p. 766
Main Authors Stochioiu, Constantin, Hadăr, Anton, Piezel, Benoît
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Flax fiber-reinforced plastics have an innate eco-friendly nature due to the fiber reinforcement and reduced energy requirements in fabrication when compared to current fiber reinforced composite materials. They possess a complex time-dependent material behavior, which is investigated in the present paper. A composite material with flax fiber reinforcement on the load direction, embedded in an epoxy resin matrix, was studied. The procedures used were tensile tests, repeated loading-recovery, and creep-recovery tests, which were meant to expose the components of the response with respect to stress level and load duration. The results showed an elastic bi-linear behavior, a yield point at approximately 20% of the ultimate tensile stress, and tensile moduli of 35.9 GPa and 26.3 GPa, before and after yield. This is coupled with significant non-linear viscoelastic and, after yield, viscoplastic components, accounting for up to 14% of the strain response. The behavior is inherited from both the matrix and the fiber reinforcement and is attributed to the amorphous nature of the matrix combined with the microstructural re-organization of the fiber under load, which are partially reversible.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15030766