CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes
The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various application...
Saved in:
Published in | Cell Vol. 168; no. 1-2; pp. 20 - 36 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
CRISPR-based genome-editing technologies provide powerful tools to study basic biology and may lead to new treatments for human disease. |
---|---|
AbstractList | The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated. The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated. The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this review we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and some of the remarkable advancements in basic research, biotechnology, and therapeutics development that these developments have facilitated. The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated. CRISPR-based genome-editing technologies provide powerful tools to study basic biology and may lead to new treatments for human disease. |
Author | Badran, Ahmed H. Liu, David R. Komor, Alexis C. |
AuthorAffiliation | 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138 3 Broad Institute of MIT and Harvard, Cambridge, MA, 02141 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138 |
AuthorAffiliation_xml | – name: 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138 – name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138 – name: 3 Broad Institute of MIT and Harvard, Cambridge, MA, 02141 |
Author_xml | – sequence: 1 givenname: Alexis C. surname: Komor fullname: Komor, Alexis C. organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 2 givenname: Ahmed H. surname: Badran fullname: Badran, Ahmed H. organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 3 givenname: David R. surname: Liu fullname: Liu, David R. email: drliu@fas.harvard.edu organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27866654$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1PHCEYhUmjqav2D_SimcvezAosDENimtT1M7Gp8eOasMyLyzoLK8yY-O9lXDXVC3sFeXnOyeE922jDBw8IfSd4TDCp9hZjA207pvmeB2PM2Bc0IliKkhFBN9AIY0nLuhJsC22ntMAY15zzr2iLirqqKs5G6HB6eXZ1cVke6ARNcQ1m7kMbbh2kwoZYdHMo_mjvVn2rOxd8EWxx1N_p-Bg6Z4oT8GEJaRdtWt0m-PZy7qCb46Pr6Wl5_vfkbPr7vDScs67UYJluNOEzSrnUUggrJlZKiyXhdAbALDUcCw4EC0yFaQQldc20NrLJeSc76Nfad9XPltAY8F3UrVpFt8yJVNBOvX_xbq5uw4PidMIlm2SDny8GMdz3kDq1dGlYovYQ-qRoXlHGGGH_RUnNKGe8YjijP_6N9ZbndcsZoGvAxJBSBPuGEKyGKtVCDdZqqHKY5SqzqP4gMq57LiF_zbWfS_fXUshlPDiIKhkH3kDjIphONcF9Jn8Cs_a46Q |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2019_05_007 crossref_primary_10_2139_ssrn_4016299 crossref_primary_10_2183_pjab_96_002 crossref_primary_10_1016_j_heares_2020_107958 crossref_primary_10_1042_BCJ20170025 crossref_primary_10_1016_j_jid_2019_07_701 crossref_primary_10_1007_s00774_020_01161_7 crossref_primary_10_1021_acs_biochem_7b00687 crossref_primary_10_1016_j_algal_2023_103068 crossref_primary_10_1038_s41467_022_30228_4 crossref_primary_10_1093_hmg_ddy120 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1016_j_jbc_2021_100394 crossref_primary_10_1038_s41684_022_01076_y crossref_primary_10_3389_fcell_2021_719705 crossref_primary_10_1073_pnas_2314698120 crossref_primary_10_1101_cshperspect_a035667 crossref_primary_10_1016_j_colsurfb_2025_114573 crossref_primary_10_1007_s12257_022_0191_9 crossref_primary_10_1016_j_tibs_2020_06_003 crossref_primary_10_1002_1873_3468_14989 crossref_primary_10_1016_j_gene_2017_06_019 crossref_primary_10_3390_brainsci7050053 crossref_primary_10_1016_j_phrs_2023_106783 crossref_primary_10_1007_s11103_022_01321_5 crossref_primary_10_1016_j_tibtech_2021_09_007 crossref_primary_10_1038_s41467_019_10747_3 crossref_primary_10_1093_nar_gkac712 crossref_primary_10_1126_science_aat4982 crossref_primary_10_1186_s40246_023_00507_2 crossref_primary_10_2174_1566523221666210303100805 crossref_primary_10_1002_smtd_201800473 crossref_primary_10_1038_s41586_019_1076_8 crossref_primary_10_1186_s41038_017_0103_y crossref_primary_10_1038_s41467_020_16117_8 crossref_primary_10_1002_cptc_202100110 crossref_primary_10_1002_jgm_2963 crossref_primary_10_1089_crispr_2019_0001 crossref_primary_10_1038_nature25164 crossref_primary_10_1007_s00018_024_05263_7 crossref_primary_10_1111_pbi_13444 crossref_primary_10_3389_fgene_2021_809832 crossref_primary_10_1073_pnas_2020401118 crossref_primary_10_3390_plants8050130 crossref_primary_10_1016_j_ggedit_2021_100005 crossref_primary_10_3390_gels8120770 crossref_primary_10_1016_j_engmic_2023_100115 crossref_primary_10_3390_diseases7030047 crossref_primary_10_3389_fimmu_2024_1462697 crossref_primary_10_1016_j_molcel_2017_08_008 crossref_primary_10_1021_acssynbio_3c00099 crossref_primary_10_1016_j_celrep_2019_07_089 crossref_primary_10_1002_smtd_202301326 crossref_primary_10_1038_s41467_021_26789_5 crossref_primary_10_1007_s00253_021_11688_y crossref_primary_10_3389_fonc_2024_1368732 crossref_primary_10_1007_s40291_019_00391_4 crossref_primary_10_1038_s12276_023_01057_2 crossref_primary_10_1111_pbi_14307 crossref_primary_10_1007_s10529_018_02639_1 crossref_primary_10_3390_biologics3040014 crossref_primary_10_3389_fgene_2019_00131 crossref_primary_10_1016_j_ijpara_2019_04_003 crossref_primary_10_1016_j_molp_2019_06_009 crossref_primary_10_18632_oncotarget_25451 crossref_primary_10_1021_jacs_1c09041 crossref_primary_10_3390_cells11142186 crossref_primary_10_1038_s41598_020_66596_4 crossref_primary_10_1007_s11248_024_00404_x crossref_primary_10_1007_s13238_017_0458_7 crossref_primary_10_1038_s41596_020_00423_y crossref_primary_10_2903_j_efsa_2020_6299 crossref_primary_10_1210_endrev_bnaa013 crossref_primary_10_3389_fnins_2023_1223747 crossref_primary_10_3103_S0095452722020037 crossref_primary_10_15302_J_FASE_2020322 crossref_primary_10_1002_sctm_18_0039 crossref_primary_10_1093_nar_gkaa208 crossref_primary_10_1007_s00335_017_9727_2 crossref_primary_10_1093_nar_gkac987 crossref_primary_10_1038_s41467_019_11514_0 crossref_primary_10_1038_s41598_022_07746_8 crossref_primary_10_1093_nsr_nwz013 crossref_primary_10_1186_s13619_020_00059_z crossref_primary_10_3390_cells14020131 crossref_primary_10_3390_biology6040042 crossref_primary_10_1021_acschembio_7b00710 crossref_primary_10_1016_j_addr_2020_05_001 crossref_primary_10_3390_biom13081208 crossref_primary_10_1371_journal_pone_0178768 crossref_primary_10_1016_j_omtm_2022_03_006 crossref_primary_10_3390_biomedicines11123347 crossref_primary_10_1016_j_tibtech_2019_03_008 crossref_primary_10_1007_s13562_020_00606_4 crossref_primary_10_1002_1873_3468_12599 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_1080_03036758_2020_1726415 crossref_primary_10_1016_j_jbiotec_2017_04_017 crossref_primary_10_1016_j_omtm_2020_05_024 crossref_primary_10_1039_D1BM00790D crossref_primary_10_1016_j_humgen_2024_201297 crossref_primary_10_1038_s41586_018_0500_9 crossref_primary_10_1016_j_celrep_2020_107723 crossref_primary_10_1093_nar_gkz267 crossref_primary_10_1111_tpj_14679 crossref_primary_10_1038_s41594_018_0054_4 crossref_primary_10_3389_fbioe_2025_1548227 crossref_primary_10_1039_D0PY01777A crossref_primary_10_1016_j_fgb_2024_103944 crossref_primary_10_1038_s41551_019_0354_y crossref_primary_10_1007_s12033_022_00479_z crossref_primary_10_1038_ncomms15790 crossref_primary_10_1063_5_0157193 crossref_primary_10_23876_j_krcp_2018_37_3_197 crossref_primary_10_1016_j_biortech_2021_126200 crossref_primary_10_1016_j_dmpk_2020_01_009 crossref_primary_10_1039_C8OB02764A crossref_primary_10_1128_AEM_00827_18 crossref_primary_10_1007_s11033_024_10101_x crossref_primary_10_1021_acsnano_3c04739 crossref_primary_10_1007_s11427_017_9170_3 crossref_primary_10_1021_acschembio_7b00855 crossref_primary_10_1186_s12943_022_01518_8 crossref_primary_10_1371_journal_pbio_3001481 crossref_primary_10_1002_smll_202002400 crossref_primary_10_1038_s41588_020_0578_5 crossref_primary_10_1155_2017_5762301 crossref_primary_10_1038_s41576_018_0053_7 crossref_primary_10_1073_pnas_1803440115 crossref_primary_10_2147_IDR_S370869 crossref_primary_10_1021_acschembio_9b01005 crossref_primary_10_1186_s43141_021_00185_4 crossref_primary_10_1093_bioinformatics_btz867 crossref_primary_10_3390_molecules28031498 crossref_primary_10_1016_j_ymthe_2020_11_013 crossref_primary_10_3390_biom9100584 crossref_primary_10_1111_1751_7915_13382 crossref_primary_10_1039_D1CC01260F crossref_primary_10_1002_cpz1_65 crossref_primary_10_1371_journal_pbio_3000496 crossref_primary_10_3389_fbioe_2019_00031 crossref_primary_10_1016_j_animal_2023_100764 crossref_primary_10_1038_s41589_020_0490_4 crossref_primary_10_3103_S0891416823030084 crossref_primary_10_1126_science_aan4672 crossref_primary_10_1038_s41587_020_0414_6 crossref_primary_10_1021_acs_bioconjchem_7b00057 crossref_primary_10_2174_0929867328666211129122908 crossref_primary_10_1158_1535_7163_MCT_18_0124 crossref_primary_10_1080_21645698_2024_2411767 crossref_primary_10_1016_j_colsurfb_2021_111901 crossref_primary_10_3390_cells12141818 crossref_primary_10_4103_ijo_IJO_3117_20 crossref_primary_10_1021_jacs_3c12702 crossref_primary_10_1093_nar_gkae604 crossref_primary_10_1007_s00335_017_9688_5 crossref_primary_10_1016_j_celrep_2019_10_078 crossref_primary_10_1038_s41422_018_0131_6 crossref_primary_10_1038_nbt_3913 crossref_primary_10_3390_ijms22073741 crossref_primary_10_1021_acssynbio_1c00297 crossref_primary_10_1016_j_drudis_2023_103652 crossref_primary_10_1038_s41581_019_0135_6 crossref_primary_10_1152_physiol_00005_2019 crossref_primary_10_1007_s10142_024_01473_1 crossref_primary_10_1007_s12033_022_00639_1 crossref_primary_10_1038_s41587_020_0561_9 crossref_primary_10_1080_17460441_2021_1850687 crossref_primary_10_1016_j_preteyeres_2021_100975 crossref_primary_10_1016_j_jgg_2024_10_014 crossref_primary_10_1038_s41467_019_09983_4 crossref_primary_10_1038_s41598_019_40181_w crossref_primary_10_3390_biology11040561 crossref_primary_10_1007_s12033_021_00345_4 crossref_primary_10_1016_j_ejphar_2025_177511 crossref_primary_10_3892_ijmm_2023_5302 crossref_primary_10_1016_j_ymthe_2019_02_012 crossref_primary_10_1016_j_coisb_2017_05_008 crossref_primary_10_1126_sciadv_aao4774 crossref_primary_10_2174_1568009618666180905100608 crossref_primary_10_1074_jbc_REV120_013433 crossref_primary_10_1186_s12862_017_0942_y crossref_primary_10_1128_mBio_02169_19 crossref_primary_10_1242_dev_195586 crossref_primary_10_1002_cjoc_202300452 crossref_primary_10_1038_ncomms15464 crossref_primary_10_1093_nar_gkac565 crossref_primary_10_1074_jbc_REV120_014405 crossref_primary_10_1038_d41586_019_01086_w crossref_primary_10_1038_s41594_018_0148_z crossref_primary_10_1002_cpcb_57 crossref_primary_10_1007_s00432_023_04747_6 crossref_primary_10_1016_j_gendis_2023_03_017 crossref_primary_10_1007_s11814_022_1076_5 crossref_primary_10_1016_j_csbj_2019_06_007 crossref_primary_10_3390_ijms21249546 crossref_primary_10_3390_vaccines12060636 crossref_primary_10_1038_nrc_2017_58 crossref_primary_10_1097_MPG_0000000000001948 crossref_primary_10_3390_pharmaceutics13101722 crossref_primary_10_1016_j_gene_2021_145919 crossref_primary_10_1093_femspd_ftx036 crossref_primary_10_1016_j_molcel_2021_12_032 crossref_primary_10_1002_ange_201900788 crossref_primary_10_1038_s41576_018_0059_1 crossref_primary_10_1016_j_chembiol_2020_02_004 crossref_primary_10_1111_jipb_13158 crossref_primary_10_1002_bit_27882 crossref_primary_10_1093_bfgp_elaa002 crossref_primary_10_1007_s00284_017_1406_8 crossref_primary_10_1016_j_molp_2018_02_005 crossref_primary_10_1016_j_ymthe_2018_08_021 crossref_primary_10_1016_j_crbiot_2019_08_003 crossref_primary_10_1007_s12033_022_00507_y crossref_primary_10_1093_bioinformatics_btab112 crossref_primary_10_3389_fgene_2024_1375481 crossref_primary_10_1002_adbi_201900253 crossref_primary_10_1002_bies_201700161 crossref_primary_10_1021_acsnano_2c10379 crossref_primary_10_1089_crispr_2022_0077 crossref_primary_10_1093_nsr_nwae135 crossref_primary_10_1016_j_ymeth_2022_03_006 crossref_primary_10_2174_0929867331666230727104911 crossref_primary_10_1038_s41579_019_0299_x crossref_primary_10_1016_j_eng_2024_10_019 crossref_primary_10_1002_mco2_155 crossref_primary_10_1016_j_cell_2018_01_012 crossref_primary_10_1039_D1OB01888D crossref_primary_10_3390_ijms20153689 crossref_primary_10_3389_fgene_2019_00365 crossref_primary_10_1038_nature26155 crossref_primary_10_1097_HCO_0000000000000394 crossref_primary_10_1093_nar_gky1165 crossref_primary_10_1016_j_trsl_2021_08_006 crossref_primary_10_1002_bit_26727 crossref_primary_10_1016_j_scib_2018_07_002 crossref_primary_10_1631_jzus_B2100710 crossref_primary_10_1080_2162402X_2019_1577127 crossref_primary_10_1021_acschembio_2c00836 crossref_primary_10_1111_dgd_12620 crossref_primary_10_3390_ijms20092056 crossref_primary_10_18699_VJ20_643 crossref_primary_10_3390_ijms222413301 crossref_primary_10_3389_fendo_2020_576632 crossref_primary_10_1016_j_crmeth_2024_100912 crossref_primary_10_3390_molecules27082434 crossref_primary_10_1126_sciadv_aba1773 crossref_primary_10_3390_ijms24108657 crossref_primary_10_1016_j_ymthe_2018_08_007 crossref_primary_10_2217_epi_2020_0110 crossref_primary_10_1016_j_drudis_2021_11_018 crossref_primary_10_1016_j_jbc_2022_102525 crossref_primary_10_1038_s41467_018_07988_z crossref_primary_10_3390_v10120732 crossref_primary_10_1038_nrd_2018_91 crossref_primary_10_1039_C9OB01686D crossref_primary_10_1093_g3journal_jkab169 crossref_primary_10_1111_cpr_13096 crossref_primary_10_1007_s11248_022_00313_x crossref_primary_10_1002_smtd_201900506 crossref_primary_10_1016_j_scienta_2019_04_042 crossref_primary_10_1016_j_biotechadv_2019_107447 crossref_primary_10_1016_j_jddst_2024_105384 crossref_primary_10_1186_s12934_019_1194_x crossref_primary_10_1016_j_ajhg_2017_06_012 crossref_primary_10_3168_jds_2020_19901 crossref_primary_10_3389_fgene_2019_00347 crossref_primary_10_3389_fphys_2018_00953 crossref_primary_10_1016_j_omtm_2019_02_008 crossref_primary_10_1016_j_cell_2019_04_009 crossref_primary_10_1016_j_molp_2019_03_009 crossref_primary_10_1073_pnas_1818461116 crossref_primary_10_1039_D2SM00204C crossref_primary_10_1155_2017_2601746 crossref_primary_10_1002_anie_201914575 crossref_primary_10_1002_rmv_2009 crossref_primary_10_1016_j_snb_2024_136472 crossref_primary_10_1002_jbmr_3351 crossref_primary_10_1093_nar_gkaa272 crossref_primary_10_1158_1541_7786_MCR_19_1208 crossref_primary_10_3390_microorganisms11102404 crossref_primary_10_1080_14779072_2024_2328642 crossref_primary_10_1038_s41598_018_25654_8 crossref_primary_10_1038_s41598_018_36739_9 crossref_primary_10_1186_s12896_019_0509_7 crossref_primary_10_1016_j_ddtec_2018_01_001 crossref_primary_10_1089_crispr_2019_0018 crossref_primary_10_1038_s41589_020_00721_2 crossref_primary_10_3390_ijms20174294 crossref_primary_10_1016_j_semcdb_2018_07_009 crossref_primary_10_1038_s41573_020_0084_6 crossref_primary_10_15302_J_FASE_2019305 crossref_primary_10_1016_j_pharmthera_2018_11_011 crossref_primary_10_1039_C8SC03426E crossref_primary_10_1016_j_dci_2017_02_025 crossref_primary_10_1007_s13238_017_0418_2 crossref_primary_10_1007_s13402_024_00954_6 crossref_primary_10_1021_acssynbio_1c00067 crossref_primary_10_1016_j_cbpa_2021_03_004 crossref_primary_10_1186_s13059_018_1445_x crossref_primary_10_18632_oncotarget_21607 crossref_primary_10_1038_s41587_020_0592_2 crossref_primary_10_1007_s00216_021_03173_2 crossref_primary_10_1016_j_celrep_2024_113878 crossref_primary_10_4014_jmb_2006_06036 crossref_primary_10_1093_nar_gkx715 crossref_primary_10_1093_nar_gkz1165 crossref_primary_10_1021_acsnano_4c02987 crossref_primary_10_1016_j_stem_2017_09_006 crossref_primary_10_1126_science_aaq0180 crossref_primary_10_1186_s13059_019_1881_2 crossref_primary_10_1016_j_molcel_2017_12_007 crossref_primary_10_1038_s41467_018_03760_5 crossref_primary_10_1038_s41596_020_00481_2 crossref_primary_10_1074_jbc_RA119_007791 crossref_primary_10_1007_s40472_019_00237_2 crossref_primary_10_1007_s41204_021_00118_z crossref_primary_10_1016_j_biomaterials_2022_121871 crossref_primary_10_1002_bit_26915 crossref_primary_10_23868_201811030 crossref_primary_10_1128_mBio_02321_18 crossref_primary_10_1515_hmbci_2021_0062 crossref_primary_10_1128_mBio_01397_17 crossref_primary_10_1093_jrr_rraa127 crossref_primary_10_1021_acsomega_8b03011 crossref_primary_10_1007_s13238_017_0460_0 crossref_primary_10_1186_s13059_019_1839_4 crossref_primary_10_1016_j_jgg_2021_05_001 crossref_primary_10_1016_j_mib_2017_05_008 crossref_primary_10_1056_NEJMoa1817426 crossref_primary_10_1021_acs_biomac_9b00783 crossref_primary_10_1523_JNEUROSCI_0621_17_2017 crossref_primary_10_1111_nep_13410 crossref_primary_10_1016_j_chom_2019_05_004 crossref_primary_10_1016_S2095_3119_17_61766_0 crossref_primary_10_1016_j_mib_2017_05_010 crossref_primary_10_1021_acssynbio_3c00501 crossref_primary_10_1002_anie_201900788 crossref_primary_10_1002_wrna_1731 crossref_primary_10_1021_acschembio_1c00895 crossref_primary_10_3389_fbioe_2021_628569 crossref_primary_10_1002_cpmb_80 crossref_primary_10_17116_molgen2023410313 crossref_primary_10_1016_j_synbio_2018_10_003 crossref_primary_10_1038_s41598_023_42174_2 crossref_primary_10_1038_s41588_021_00861_8 crossref_primary_10_1016_j_tig_2022_06_015 crossref_primary_10_1186_s12934_020_01431_z crossref_primary_10_1360_SSV_2022_0309 crossref_primary_10_1038_s41598_020_71742_z crossref_primary_10_1096_fj_202001065RRR crossref_primary_10_3389_fcell_2021_769673 crossref_primary_10_1038_s41587_021_00928_1 crossref_primary_10_1371_journal_pone_0230898 crossref_primary_10_3390_cells8020186 crossref_primary_10_1126_science_aay2056 crossref_primary_10_1016_j_biomaterials_2020_120094 crossref_primary_10_1089_crispr_2022_0001 crossref_primary_10_3390_ijms21176240 crossref_primary_10_1016_j_cell_2017_10_025 crossref_primary_10_1016_j_omtn_2017_10_013 crossref_primary_10_1016_j_neuron_2018_03_040 crossref_primary_10_1038_s41417_023_00597_z crossref_primary_10_1038_s41576_018_0082_2 crossref_primary_10_1038_s41392_023_01544_y crossref_primary_10_1053_j_gastro_2018_11_048 crossref_primary_10_1016_j_jgg_2017_04_009 crossref_primary_10_1093_nar_gkz1078 crossref_primary_10_1111_1744_7917_12904 crossref_primary_10_3390_agriculture14030487 crossref_primary_10_1089_crispr_2023_0047 crossref_primary_10_1016_j_molcel_2018_06_021 crossref_primary_10_1038_s41576_022_00541_1 crossref_primary_10_1186_s40164_023_00457_4 crossref_primary_10_1053_j_semperi_2018_09_003 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_1016_j_ymeth_2021_06_004 crossref_primary_10_1007_s12268_021_1549_9 crossref_primary_10_1016_j_cobme_2020_100249 crossref_primary_10_1002_cpmb_100 crossref_primary_10_1002_wsbm_1408 crossref_primary_10_1038_s43586_020_00011_0 crossref_primary_10_1248_bpb_b18_00222 crossref_primary_10_1089_adt_2017_796 crossref_primary_10_1093_nar_gkae324 crossref_primary_10_1038_s41422_019_0165_4 crossref_primary_10_1038_s41467_018_08158_x crossref_primary_10_1002_mco2_672 crossref_primary_10_1038_s41576_021_00329_9 crossref_primary_10_1016_j_tins_2023_02_005 crossref_primary_10_1038_nmeth_4483 crossref_primary_10_1093_nar_gkab174 crossref_primary_10_1016_j_molcel_2019_09_025 crossref_primary_10_1002_biot_201800195 crossref_primary_10_1016_j_omtn_2024_102257 crossref_primary_10_1016_j_bpg_2019_101633 crossref_primary_10_1186_s13227_017_0070_1 crossref_primary_10_1038_s41594_020_0499_0 crossref_primary_10_1242_dmm_048938 crossref_primary_10_1038_s41467_022_29670_1 crossref_primary_10_1021_acs_jchemed_6b00578 crossref_primary_10_1016_j_ymthe_2021_08_024 crossref_primary_10_1093_toxres_tfae105 crossref_primary_10_1080_17425247_2020_1747429 crossref_primary_10_1186_s13059_019_1762_8 crossref_primary_10_32604_biocell_2022_020570 crossref_primary_10_1016_j_biotechadv_2022_108047 crossref_primary_10_1016_j_pnpbp_2017_08_011 crossref_primary_10_3390_app11188300 crossref_primary_10_1016_j_omtn_2020_03_004 crossref_primary_10_1038_nrgastro_2017_151 crossref_primary_10_1016_j_mmm_2020_10_001 crossref_primary_10_1038_s41598_017_17387_x crossref_primary_10_3390_ijms22010249 crossref_primary_10_1016_j_bbcan_2020_188378 crossref_primary_10_1016_j_omtn_2024_102123 crossref_primary_10_3389_fgene_2019_00750 crossref_primary_10_1021_acsnano_3c01917 crossref_primary_10_3390_biom10111523 crossref_primary_10_1016_j_gde_2019_06_009 crossref_primary_10_1007_s12274_019_2465_x crossref_primary_10_1007_s40502_018_0423_3 crossref_primary_10_1080_15592294_2022_2106646 crossref_primary_10_1002_jcb_26099 crossref_primary_10_1016_j_carbpol_2023_121443 crossref_primary_10_1002_bies_202000315 crossref_primary_10_1093_nar_gkad052 crossref_primary_10_3390_ijms242015301 crossref_primary_10_1016_j_ymthe_2019_11_029 crossref_primary_10_3389_fcell_2021_755165 crossref_primary_10_1007_s00335_024_10099_4 crossref_primary_10_1021_jacs_2c07913 crossref_primary_10_1016_j_bbrc_2020_04_039 crossref_primary_10_1002_jcp_25796 crossref_primary_10_1038_nrg_2017_59 crossref_primary_10_1089_crispr_2017_0016 crossref_primary_10_1016_j_mib_2017_06_003 crossref_primary_10_1007_s11033_020_05820_w crossref_primary_10_1016_j_celrep_2019_12_064 crossref_primary_10_1080_24701394_2018_1472773 crossref_primary_10_1016_j_celrep_2019_10_017 crossref_primary_10_1038_s41467_022_28106_0 crossref_primary_10_1016_j_tibtech_2020_05_013 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_1097_JS9_0000000000001081 crossref_primary_10_1016_j_molcel_2017_06_035 crossref_primary_10_1039_D1OB02019F crossref_primary_10_1186_s13073_021_00857_3 crossref_primary_10_1016_j_yebeh_2021_108043 crossref_primary_10_1371_journal_pone_0179165 crossref_primary_10_3390_jcm8111959 crossref_primary_10_3389_fsybi_2023_1296513 crossref_primary_10_1039_C9OB02111F crossref_primary_10_1007_s13238_020_00699_6 crossref_primary_10_1016_j_colsurfb_2023_113146 crossref_primary_10_1007_s10539_018_9664_9 crossref_primary_10_1016_j_omtn_2018_05_010 crossref_primary_10_1080_19336934_2020_1832416 crossref_primary_10_1016_j_celrep_2018_09_090 crossref_primary_10_1073_pnas_2216822120 crossref_primary_10_1371_journal_pone_0240256 crossref_primary_10_1016_j_ymthe_2021_07_011 crossref_primary_10_1016_j_cell_2019_07_044 crossref_primary_10_1089_wound_2020_1287 crossref_primary_10_1007_s00294_021_01211_1 crossref_primary_10_1111_cpr_12820 crossref_primary_10_1016_j_cell_2018_09_010 crossref_primary_10_1038_s41467_018_08034_8 crossref_primary_10_1038_nature23875 crossref_primary_10_1038_s41598_021_03160_8 crossref_primary_10_1016_j_tins_2019_10_003 crossref_primary_10_1021_acsnano_7b02884 crossref_primary_10_1152_physrev_00046_2017 crossref_primary_10_12688_f1000research_11113_1 crossref_primary_10_1080_21655979_2022_2162667 crossref_primary_10_1186_s13068_019_1637_y crossref_primary_10_3389_fbioe_2020_00083 crossref_primary_10_1007_s00125_019_4908_z crossref_primary_10_1038_s41586_022_05140_y crossref_primary_10_1038_s41587_021_01039_7 crossref_primary_10_1074_jbc_H118_006147 crossref_primary_10_1038_s41467_022_32743_w crossref_primary_10_1021_acssynbio_9b00188 crossref_primary_10_3390_medicina57030225 crossref_primary_10_1038_s41598_023_50776_z crossref_primary_10_1167_tvst_9_9_47 crossref_primary_10_18008_1816_5095_2019_4_479_486 crossref_primary_10_3390_agriculture13020298 crossref_primary_10_1016_j_molcel_2018_12_003 crossref_primary_10_1038_s41587_018_0011_0 crossref_primary_10_3390_ijms23063002 crossref_primary_10_2174_1566523220666201214115024 crossref_primary_10_1016_j_cpb_2020_100171 crossref_primary_10_1186_s13059_018_1515_0 crossref_primary_10_1016_j_mam_2019_03_004 crossref_primary_10_1002_1873_3468_13127 crossref_primary_10_1186_s12896_020_00650_x crossref_primary_10_3390_cells11060999 crossref_primary_10_1002_stem_3006 crossref_primary_10_1186_s13059_018_1591_1 crossref_primary_10_1016_j_ebiom_2017_05_015 crossref_primary_10_1016_j_lmd_2024_100011 crossref_primary_10_1016_j_devcel_2018_04_021 crossref_primary_10_3390_bioengineering8090119 crossref_primary_10_1007_s00018_019_03252_9 crossref_primary_10_1038_s41577_018_0046_y crossref_primary_10_1021_acssynbio_6b00339 crossref_primary_10_1038_s41467_021_27836_x crossref_primary_10_1038_s41467_023_39087_z crossref_primary_10_1126_sciadv_1601910 crossref_primary_10_3389_fmicb_2017_02194 crossref_primary_10_1111_pre_12397 crossref_primary_10_1073_pnas_2016539117 crossref_primary_10_1073_pnas_1718193115 crossref_primary_10_1093_nar_gkab1197 crossref_primary_10_1097_CAD_0000000000000571 crossref_primary_10_1093_jleuko_qiad074 crossref_primary_10_1186_s12967_022_03738_4 crossref_primary_10_1002_jcp_26141 crossref_primary_10_1007_s00335_017_9702_y crossref_primary_10_1093_plphys_kiab591 crossref_primary_10_3389_fgene_2024_1382445 crossref_primary_10_1093_nar_gky1300 crossref_primary_10_1016_j_cell_2017_11_032 crossref_primary_10_1002_jgm_3082 crossref_primary_10_1093_nar_gkz713 crossref_primary_10_3389_fcell_2020_583164 crossref_primary_10_1038_s41467_024_49987_3 crossref_primary_10_1016_j_bcp_2023_115555 crossref_primary_10_1038_s41598_018_36740_2 crossref_primary_10_1177_0963689717753378 crossref_primary_10_1016_j_cr_2019_08_002 crossref_primary_10_1021_acssynbio_9b00284 crossref_primary_10_1038_s41467_019_09694_w crossref_primary_10_1371_journal_pone_0187236 crossref_primary_10_1038_s41467_020_14465_z crossref_primary_10_1038_s41598_019_45265_1 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1038_s43018_020_0040_8 crossref_primary_10_3390_jcm12031046 crossref_primary_10_1146_annurev_genet_030723_120717 crossref_primary_10_1007_s13534_021_00199_4 crossref_primary_10_3389_fgeed_2020_618385 crossref_primary_10_1093_nar_gkae283 crossref_primary_10_1007_s12274_024_6729_8 crossref_primary_10_1089_crispr_2018_0010 crossref_primary_10_1038_s41587_020_0412_8 crossref_primary_10_1093_nar_gkab1295 crossref_primary_10_1002_hep4_1933 crossref_primary_10_1016_j_jgg_2020_10_007 crossref_primary_10_1016_j_ygeno_2025_111014 crossref_primary_10_1038_s41467_018_06129_w crossref_primary_10_1016_j_trac_2022_116750 crossref_primary_10_3389_fcell_2022_750833 crossref_primary_10_1016_j_gene_2022_146595 crossref_primary_10_1016_j_ymthe_2024_10_003 crossref_primary_10_3389_fimmu_2022_919550 crossref_primary_10_1093_nar_gkaa1199 crossref_primary_10_1111_pbi_13225 crossref_primary_10_7554_eLife_31628 crossref_primary_10_1016_j_preteyeres_2018_08_003 crossref_primary_10_1002_biot_201700586 crossref_primary_10_1146_annurev_immunol_042718_041447 crossref_primary_10_1128_Spectrum_01017_21 crossref_primary_10_1007_s13205_019_1966_3 crossref_primary_10_1186_s12934_017_0815_5 crossref_primary_10_1111_febs_16457 crossref_primary_10_3389_fgeed_2020_571239 crossref_primary_10_1002_wrna_1641 crossref_primary_10_1038_s41388_023_02929_7 crossref_primary_10_1038_s41598_019_47629_z crossref_primary_10_1016_j_coisb_2017_08_008 crossref_primary_10_2139_ssrn_3385124 crossref_primary_10_1038_s41467_017_01591_4 crossref_primary_10_1080_22221751_2020_1793689 crossref_primary_10_3390_pharmaceutics14051087 crossref_primary_10_1038_s12276_019_0339_7 crossref_primary_10_1016_j_jbc_2022_102085 crossref_primary_10_12688_f1000research_11243_1 crossref_primary_10_1016_j_molmed_2020_01_013 crossref_primary_10_1186_s12915_023_01714_y crossref_primary_10_1186_s12967_024_05570_4 crossref_primary_10_3390_pharmaceutics12080767 crossref_primary_10_1089_crispr_2018_0026 crossref_primary_10_1016_j_tibtech_2020_06_009 crossref_primary_10_15406_jmen_2018_06_00225 crossref_primary_10_1038_s41380_020_00944_8 crossref_primary_10_1371_journal_pone_0249439 crossref_primary_10_1111_pbi_13244 crossref_primary_10_16967_23898186_650 crossref_primary_10_1016_j_bcp_2019_113672 crossref_primary_10_1038_s41467_017_02214_8 crossref_primary_10_1093_bib_bbad133 crossref_primary_10_1186_s13059_023_02987_w crossref_primary_10_1002_ecs2_70054 crossref_primary_10_1016_j_cej_2024_158522 crossref_primary_10_1186_s12967_023_04610_9 crossref_primary_10_1016_j_isci_2022_104389 crossref_primary_10_1038_s41594_017_0004_6 crossref_primary_10_1186_s12915_018_0617_1 crossref_primary_10_1002_wdev_392 crossref_primary_10_1002_wdev_272 crossref_primary_10_1038_s41467_018_07827_1 crossref_primary_10_1242_dev_181974 crossref_primary_10_1128_spectrum_00003_24 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_1186_s12967_024_05957_3 crossref_primary_10_1038_s41587_023_01756_1 crossref_primary_10_1007_s10709_021_00146_2 crossref_primary_10_1038_nsmb_3373 crossref_primary_10_1007_s00299_024_03346_0 crossref_primary_10_1038_nsmb_3486 crossref_primary_10_1073_pnas_1810062115 crossref_primary_10_1089_cell_2023_0094 crossref_primary_10_1016_j_gene_2024_149075 crossref_primary_10_1016_j_molcel_2020_07_005 crossref_primary_10_1089_crispr_2018_0050 crossref_primary_10_1021_acssensors_2c00024 crossref_primary_10_1038_s41467_019_14102_4 crossref_primary_10_1111_pbi_13383 crossref_primary_10_3390_ijms22010319 crossref_primary_10_1111_pbi_13021 crossref_primary_10_1002_ange_201914575 crossref_primary_10_1016_j_talo_2023_100225 crossref_primary_10_1128_mSphere_00345_19 |
Cites_doi | 10.1089/hum.2015.084 10.1016/j.cell.2015.06.059 10.1038/nmeth.2408 10.1038/nbt.3199 10.1126/science.1078395 10.1126/science.1254287 10.1038/nbt.2508 10.1128/MCB.15.4.1968 10.1101/gr.161638.113 10.1016/j.cell.2013.08.022 10.1128/jb.174.17.5593-5596.1992 10.1038/nbt.2675 10.1126/science.1231143 10.1007/s12033-007-0010-8 10.1093/nar/gkr606 10.1038/nbt.1775 10.1038/ncomms10548 10.1126/science.aad5177 10.1038/nprot.2015.117 10.1038/nmeth.2845 10.1007/s13238-014-0032-5 10.1126/science.aaa5945 10.1038/nprot.2013.143 10.1016/j.cell.2014.01.027 10.1038/nmeth.3312 10.1038/nbt.2884 10.1126/science.aab1028 10.1038/mt.2014.226 10.1073/pnas.1501698112 10.1038/nature09523 10.1016/j.stem.2014.04.020 10.1038/srep05405 10.1093/nar/gkq787 10.1073/pnas.1512503112 10.1002/jgm.1052 10.1016/j.cell.2012.11.054 10.1016/0168-9525(96)10019-6 10.1016/S0065-2660(08)60144-3 10.1002/anie.201606123 10.1126/science.aad5227 10.1038/srep15577 10.1371/journal.pone.0109213 10.1038/nbt.3609 10.7554/eLife.04766 10.1016/j.jmb.2004.07.031 10.1186/s13229-015-0048-6 10.1038/nrg3899 10.1161/CIRCRESAHA.115.304351 10.1038/nbt.3439 10.1038/celldisc.2016.9 10.1038/nbt.2652 10.1038/nchembio.1753 10.1038/nrg3763 10.1111/febs.13416 10.1038/nature09886 10.1038/nmeth.1670 10.1093/nar/gkt555 10.1038/317230a0 10.1089/104303404322959551 10.1038/nbt.3055 10.1038/srep23549 10.1038/nmeth.3047 10.1038/nbt.3245 10.1038/nature14592 10.1016/j.chembiol.2014.12.011 10.1038/nm953 10.1371/journal.pone.0115987 10.1126/science.1247005 10.1016/j.tibtech.2013.04.004 10.1038/nbt.2661 10.1073/pnas.82.5.1391 10.1002/dvg.22720 10.1038/nbt.3471 10.1016/j.stem.2016.01.022 10.1126/science.aad5725 10.1038/nature13906 10.1038/nbt.3235 10.1093/genetics/161.3.1169 10.1038/nbt.1755 10.1093/nar/gkl645 10.1016/j.cell.2016.01.039 10.1038/nbt.3658 10.1016/j.stem.2014.06.011 10.1128/JB.01412-07 10.1038/nbt.3481 10.1016/j.jim.2003.10.010 10.1126/science.1138140 10.1128/MCB.14.12.8096 10.1371/journal.pcbi.0010060 10.1038/nbt.2507 10.1093/nar/gkp548 10.1038/nature14299 10.1038/nchembio.1793 10.1073/pnas.1520244113 10.1242/bio.019067 10.1038/nbt.3149 10.1038/nature17664 10.1089/hum.2015.074 10.1038/nbt.3404 10.1089/104303401753153947 10.1016/j.cell.2015.09.038 10.1038/nbt.3469 10.1126/science.2660260 10.1093/nar/gkv137 10.1038/cr.2014.11 10.1101/gr.179044.114 10.1126/science.1254445 10.1016/0092-8674(86)90463-0 10.1016/j.cell.2013.08.021 10.1016/j.stem.2013.11.002 10.1038/nbt.2501 10.1038/nbt.2916 10.1126/science.1246981 10.1038/nbt.2842 10.1242/dev.099085 10.1371/journal.pone.0113232 10.1038/srep10833 10.1093/bioinformatics/btv423 10.1126/science.aad5143 10.1016/j.stem.2015.01.003 10.1093/genetics/122.3.519 10.1371/journal.pone.0068708 10.1038/nmeth.3871 10.1016/j.cell.2016.08.056 10.7554/eLife.03401 10.1073/pnas.1208507109 10.1126/science.1079512 10.1093/nar/gkv601 10.1038/nrg3900 10.1016/j.stemcr.2014.09.013 10.1126/science.1258096 10.1038/nrm3486 10.1038/gt.2015.2 10.1038/nmeth.2600 10.1016/j.stemcr.2014.10.013 10.1016/j.cell.2013.04.025 10.1126/science.1232033 10.1073/pnas.1313587110 10.1002/j.1460-2075.1993.tb05691.x 10.1038/gt.2008.145 10.1038/nbt.3528 10.1038/ng.3258 10.1016/j.celrep.2013.06.020 10.1038/nbt.2623 10.1038/nature13589 10.1038/ncomms6507 10.1038/nature13166 10.1016/j.febslet.2014.09.008 10.1016/B978-0-12-801185-0.00006-4 10.1126/science.aad8282 10.1016/j.cell.2014.09.029 10.1016/j.stem.2014.05.018 10.1038/cr.2013.45 10.1038/mtna.2014.38 10.1073/pnas.1521077112 10.1016/j.cell.2014.09.039 10.1038/ncomms7244 10.1038/nbt.2951 10.1126/science.aaf8729 10.1101/gr.171264.113 10.1016/j.molcel.2015.09.020 10.1099/vir.0.000139 10.1016/j.stem.2015.06.001 10.1038/nmeth.2681 10.1016/j.stem.2016.04.013 10.1038/nmeth.3733 10.1038/nmeth.3325 10.1038/sj.mt.6300314 10.1016/j.cell.2014.11.052 10.1101/gr.171322.113 10.1038/mt.2009.255 10.1038/nbt.3155 10.7554/eLife.00471 10.1126/science.1151526 10.1089/hum.2014.111 10.1126/science.1178811 10.1016/j.cell.2014.09.014 10.1146/annurev-genet-051710-150955 10.1038/nbt.3117 10.1038/nbt.2647 10.1093/nar/gkq704 10.1089/hum.2015.087 10.1038/nmeth.2598 10.1517/14712598.4.6.773 10.1038/nature13695 10.1534/genetics.113.155382 10.1038/nrg2842 10.1186/s13073-015-0215-6 10.1126/science.1225829 10.1016/j.cell.2013.02.022 10.1093/nar/gkw159 10.1038/nmeth.3284 10.1093/nar/gkr188 10.1021/ja512664v 10.1038/nmeth.3630 10.1038/nbt.2908 10.1016/j.cell.2015.02.038 10.1038/nbt.2673 10.1038/nbt1353 10.1038/nbt.3190 10.1038/71889 10.1038/mt.2015.218 10.1038/nature13902 10.1038/nprot.2007.226 10.1038/nbt.2808 10.1038/nature17945 10.1093/nar/gkh703 10.1016/j.cell.2006.07.024 10.1093/nar/gkv993 10.1038/cr.2013.122 10.1101/gr.173427.114 10.1016/j.cell.2013.06.044 10.1038/nrg.2016.28 10.1038/nbt.3198 10.1038/nbt.3081 10.1038/nbt.2909 10.1186/s13073-015-0178-7 10.1038/nature14136 10.1016/j.stem.2013.10.016 10.1126/science.281.5380.1161 10.1016/j.cell.2014.05.010 10.1016/j.jbiotec.2015.04.024 10.1016/j.stem.2013.03.006 10.1186/s13059-015-0817-8 10.1038/nbt.3620 10.1038/nature17946 10.1016/j.stem.2015.07.001 10.1016/j.tim.2013.09.001 10.1038/nature16526 10.1126/science.1178817 10.1038/nbt.2889 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2016.10.044 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 36 |
ExternalDocumentID | PMC5235943 27866654 10_1016_j_cell_2016_10_044 S0092867416314659 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118062 – fundername: NIGMS NIH HHS grantid: R01 GM065400 – fundername: Howard Hughes Medical Institute – fundername: NIBIB NIH HHS grantid: R01 EB022376 – fundername: NIGMS NIH HHS grantid: F32 GM112366 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-aef4ada15b2259a977f73f99f09152bee4f2c5075e107027cd721884aac9d6663 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 13:40:46 EDT 2025 Fri Jul 11 01:00:00 EDT 2025 Fri Jul 11 00:31:49 EDT 2025 Mon Jul 21 06:01:41 EDT 2025 Thu Apr 24 23:03:56 EDT 2025 Tue Jul 01 02:16:56 EDT 2025 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-aef4ada15b2259a977f73f99f09152bee4f2c5075e107027cd721884aac9d6663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416314659 |
PMID | 27866654 |
PQID | 1842545640 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5235943 proquest_miscellaneous_2000433414 proquest_miscellaneous_1842545640 pubmed_primary_27866654 crossref_primary_10_1016_j_cell_2016_10_044 crossref_citationtrail_10_1016_j_cell_2016_10_044 elsevier_sciencedirect_doi_10_1016_j_cell_2016_10_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-12 |
PublicationDateYYYYMMDD | 2017-01-12 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chavez, Tuttle, Pruitt, Ewen-Campen, Chari, Ter-Ovanesyan, Haque, Cecchi, Kowal, Buchthal (bib19) 2016; 13 Swiech, Heidenreich, Banerjee, Habib, Li, Trombetta, Sur, Zhang (bib184) 2015; 33 Kleinstiver, Pattanayak, Prew, Tsai, Nguyen, Zheng, Joung (bib89) 2016; 529 Jiang, Bikard, Cox, Zhang, Marraffini (bib76) 2013; 31 Bassett, Tibbit, Ponting, Liu (bib7) 2013; 4 Saleh-Gohari, Helleday (bib165) 2004; 32 Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadán, Moineau (bib46) 2010; 468 Sussman, Chadsey, Fauce, Engel, Bruett, Monnat, Stoddard, Seligman (bib183) 2004; 342 Li, Huang, Zhao, Wright, Carpenter, Spalding, Weeks, Yang (bib97) 2011; 39 Bibikova, Golic, Golic, Carroll (bib8) 2002; 161 Pinder, Salsman, Dellaire (bib148) 2015; 43 Wu, Scott, Kriz, Chiu, Hsu, Dadon, Cheng, Trevino, Konermann, Chen (bib209) 2014; 32 Nihongaki, Kawano, Nakajima, Sato (bib132) 2015; 33 Wang, Mou, Li, Li, Hough, Tran, Li, Yin, Anderson, Sontheimer (bib203) 2015; 26 Chu, Weber, Wefers, Wurst, Sander, Rajewsky, Kühn (bib26) 2015; 33 Maruyama, Dougan, Truttmann, Bilate, Ingram, Ploegh (bib121) 2015; 33 Grizot, Smith, Daboussi, Prieto, Redondo, Merino, Villate, Thomas, Lemaire, Montoya (bib53) 2009; 37 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib78) 2012; 337 Chavez, Scheiman, Vora, Pruitt, Tuttle, Iyer E, Lin, Kiani, Guzman, Wiegand (bib18) 2015; 12 Qi, Larson, Gilbert, Doudna, Weissman, Arkin, Lim (bib153) 2013; 152 Cho, Kim, Kim, Kim (bib24) 2013; 31 Paquet, Kwart, Chen, Sproul, Jacob, Teo, Olsen, Gregg, Noggle, Tessier-Lavigne (bib141) 2016; 533 Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib218) 2014; 15 Perez-Pinera, Kocak, Vockley, Adler, Kabadi, Polstein, Thakore, Glass, Ousterout, Leong (bib147) 2013; 10 Oye, Esvelt, Appleton, Catteruccia, Church, Kuiken, Lightfoot, McNamara, Smidler, Collins (bib140) 2014; 345 Chang, Sun, Gao, Zhu, Xu, Zhu, Xiong, Xi (bib17) 2013; 23 Song, Yang, Xu, Zhu, Chen, Zhang (bib180) 2016; 7 Li, Teng, Li, Zhou (bib99) 2013; 31 Kim, Bae, Park, Kim, Kim, Yu, Hwang, Kim, Kim (bib85) 2015; 12 Tsai, Wyvekens, Khayter, Foden, Thapar, Reyon, Goodwin, Aryee, Joung (bib193) 2014; 32 Miyaoka, Berman, Cooper, Mayerl, Chan, Zhang, Karlin-Neumann, Conklin (bib125) 2016; 6 Polstein, Gersbach (bib150) 2015; 11 Yu, Liu, Ma, Liu, Xu, Zhang, Liu, La Russa, Xie, Ding, Qi (bib222) 2015; 16 Keung, Joung, Khalil, Collins (bib82) 2015; 16 Zhen, Hua, Liu, Gao, Fu, Wan, Dong, Song, Gao (bib230) 2015; 22 Zhang, Rajan, Seifert, Mondragón, Sontheimer (bib229) 2015; 60 Gaj, Gersbach, Barbas (bib43) 2013; 31 Polstein, Perez-Pinera, Kocak, Vockley, Bledsoe, Song, Safi, Crawford, Reddy, Gersbach (bib151) 2015; 25 Yang, Wang, Shivalila, Cheng, Shi, Jaenisch (bib214) 2013; 154 Kim, Kim, Cho, Kim, Kim (bib84) 2014; 24 Sanjana, Shalem, Zhang (bib169) 2014; 11 Pattanayak, Ramirez, Joung, Liu (bib144) 2011; 8 Urnov, Rebar, Holmes, Zhang, Gregory (bib195) 2010; 11 Li, Guan, Du, Jin, Wu, Liu, Wang, Hu, Griffin, Shattock, Hu (bib100) 2015; 96 Li, Fujimoto, Sasakawa, Shirai, Ohkame, Sakuma, Tanaka, Amano, Watanabe, Sakurai (bib101) 2015; 4 Xie, Ye, Chang, Beyer, Wang, Muench, Kan (bib211) 2014; 24 Sapranauskas, Gasiunas, Fremaux, Barrangou, Horvath, Siksnys (bib170) 2011; 39 Mou, Kennedy, Anderson, Yin, Xue (bib128) 2015; 7 Sanjana (bib168) 2016 Smith, Abalde-Atristain, He, Brodsky, Braunstein, Chaudhari, Jang, Cheng, Ye (bib178) 2015; 23 Deltcheva, Chylinski, Sharma, Gonzales, Chao, Pirzada, Eckert, Vogel, Charpentier (bib31) 2011; 471 Guilinger, Thompson, Liu (bib55) 2014; 32 Carroll (bib14) 2008; 15 Heckl, Kowalczyk, Yudovich, Belizaire, Puram, McConkey, Thielke, Aster, Regev, Ebert (bib60) 2014; 32 Thomas, Folger, Capecchi (bib190) 1986; 44 Kearns, Pham, Tabak, Genga, Silverstein, Garber, Maehr (bib81) 2015; 12 Ousterout, Kabadi, Thakore, Majoros, Reddy, Gersbach (bib139) 2015; 6 Wu, Yang, Colosi (bib207) 2010; 18 Hsu, Lander, Zhang (bib70) 2014; 157 Chakraborty, Ji, Kabadi, Gersbach, Christoforou, Leong (bib16) 2014; 3 Jiang, Taylor, Chen, Kornfeld, Zhou, Thompson, Nogales, Doudna (bib77) 2016; 351 Thakore, Black, Hilton, Gersbach (bib189) 2016; 13 al Yacoub, Romanowska, Haritonova, Foerster (bib1) 2007; 9 Hou, Zhang, Propson, Howden, Chu, Sontheimer, Thomson (bib66) 2013; 110 Thakore, D’Ippolito, Song, Safi, Shivakumar, Kabadi, Reddy, Crawford, Gersbach (bib188) 2015; 12 Ramakrishna, Kwaku Dad, Beloor, Gopalappa, Lee, Kim (bib154) 2014; 24 Hou, Chen, Wang, Yu, Chen, Jiang, Zhuang, Ho, Hou, Huang, Guo (bib67) 2015; 5 Gilbert, Horlbeck, Adamson, Villalta, Chen, Whitehead, Guimaraes, Panning, Ploegh, Bassik (bib50) 2014; 159 Mironov, Visconti, Markwald (bib124) 2004; 4 Kleinstiver, Prew, Tsai, Nguyen, Topkar, Zheng, Joung (bib87) 2015; 33 Ramanan, Shlomai, Cox, Schwartz, Michailidis, Bhatta, Scott, Zhang, Rice, Bhatia (bib155) 2015; 5 Hwang, Fu, Reyon, Maeder, Tsai, Sander, Peterson, Yeh, Joung (bib72) 2013; 31 Kuscu, Arslan, Singh, Thorpe, Adli (bib94) 2014; 32 Li, Qiu, Shao, Chen, Guan, Liu, Li, Gao, Wang, Lu (bib98) 2013; 31 Konermann, Brigham, Trevino, Joung, Abudayyeh, Barcena, Hsu, Habib, Gootenberg, Nishimasu (bib92) 2015; 517 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib157) 2013; 8 Biswas, Vagner, Ehrlich (bib10) 1992; 174 Zalatan, Lee, Almeida, Gilbert, Whitehead, La Russa, Tsai, Weissman, Dueber, Qi, Lim (bib223) 2015; 160 Auer, Duroure, De Cian, Concordet, Del Bene (bib3) 2014; 24 Wright, Sternberg, Taylor, Staahl, Bardales, Kornfeld, Doudna (bib206) 2015; 112 Baltimore, Berg, Botchan, Carroll, Charo, Church, Corn, Daley, Doudna, Fenner (bib4) 2015; 348 Hirano, Gootenberg, Horii, Abudayyeh, Kimura, Hsu, Nakane, Ishitani, Hatada, Zhang (bib64) 2016; 164 Richardson, Ray, DeWitt, Curie, Corn (bib159) 2016; 34 Sánchez-Rivera, Papagiannakopoulos, Romero, Tammela, Bauer, Bhutkar, Joshi, Subbaraj, Bronson, Xue, Jacks (bib166) 2014; 516 Lombardo, Genovese, Beausejour, Colleoni, Lee, Kim, Ando, Urnov, Galli, Gregory (bib111) 2007; 25 Parnas, Jovanovic, Eisenhaure, Herbst, Dixit, Ye, Przybylski, Platt, Tirosh, Sanjana (bib143) 2015; 162 Gantz, Bier (bib44) 2015; 348 Wang, Lin, Pedrosa, Hrabovsky, Zhang, Guo, Lachman, Zheng (bib204) 2015; 6 Kleinstiver, Prew, Tsai, Topkar, Nguyen, Zheng, Gonzales, Li, Peterson, Yeh (bib88) 2015; 523 Cockrell, Kafri (bib27) 2007; 36 Guilinger, Pattanayak, Reyon, Tsai, Sander, Joung, Liu (bib54) 2014; 11 Platt, Chen, Zhou, Yim, Swiech, Kempton, Dahlman, Parnas, Eisenhaure, Jovanovic (bib149) 2014; 159 Osborn, Gabriel, Webber, DeFeo, McElroy, Jarjour, Starker, Wagner, Joung, Voytas (bib138) 2015; 26 Gasiunas, Siksnys (bib47) 2013; 21 Zeitelhofer, Vessey, Xie, Tübing, Thomas, Kiebler, Dahm (bib224) 2007; 2 Zhou, Zhu, Cai, Yuan, Li, Huang, Wei (bib231) 2014; 509 Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib49) 2013; 154 Jasin (bib74) 1996; 12 Long, McAnally, Shelton, Mireault, Bassel-Duby, Olson (bib112) 2014; 345 Robert, Barbeau, Éthier, Dostie, Pelletier (bib160) 2015; 7 McDonald, Celik, Rois, Fishberger, Fowler, Rees, Kramer, Martens, Edwards, Challen (bib122) 2016; 5 Chen, Cao, Xiong, Petersen, Dong, Tao, Huang, Du, Zhang (bib21) 2015; 17 Xu, Tao, Gao, Zhang, Li, Zou, Ruan, Wang, Xu, Hu (bib212) 2016; 2 Veres, Gosis, Ding, Collins, Ragavendran, Brand, Erdin, Cowan, Talkowski, Musunuru (bib197) 2014; 15 Zetsche, Volz, Zhang (bib226) 2015; 33 Hockemeyer, Jaenisch (bib65) 2016; 18 Kleinstiver, Tsai, Prew, Nguyen, Welch, Lopez, McCaw, Aryee, Joung (bib90) 2016; 34 Gori, Hsu, Maeder, Shen, Welstead, Bumcrot (bib52) 2015; 26 Jain, Ramanan, Schepers, Dalvie, Panda, Fleming, Bhatia (bib73) 2016; 55 Tanenbaum, Gilbert, Qi, Weissman, Vale (bib187) 2014; 159 Ding, Regan, Xia, Oostrom, Cowan, Musunuru (bib33) 2013; 12 Nihongaki, Yamamoto, Kawano, Suzuki, Sato (bib133) 2015; 22 Fonfara, Richter, Bratovič, Le Rhun, Charpentier (bib39) 2016; 532 Schumann, Lin, Boyer, Simeonov, Subramaniam, Gate, Haliburton, Ye, Bluestone, Doudna, Marson (bib171) 2015; 112 Lo, Pickle, Lin, Ralston, Gurling, Schartner, Bian, Doudna, Meyer (bib110) 2013; 195 Boch, Scholze, Schornack, Landgraf, Hahn, Kay, Lahaye, Nickstadt, Bonas (bib11) 2009; 326 Gasiunas, Barrangou, Horvath, Siksnys (bib48) 2012; 109 Wang, Peng, Ehrhardt, Storm, Kay (bib199) 2004; 15 Yang, Guell, Byrne, Yang, De Los Angeles, Mali, Aach, Kim-Kiselak, Briggs, Rios (bib215) 2013; 41 Shalem, Sanjana, Hartenian, Shi, Scott, Mikkelsen, Heckl, Ebert, Root, Doench, Zhang (bib173) 2014; 343 Cheng, Wang, Yang, Shi, Katz, Theunissen, Rangarajan, Shivalila, Dadon, Jaenisch (bib22) 2013; 23 Rosen, Morrison, Masri, Brown, Springstubb, Sussman, Stoddard, Seligman (bib162) 2006; 34 Kumar, Keller, Makalou, Sutton (bib93) 2001; 12 Lin, Yang, Kuo, Liu, Yang, Sung, Lin, Wang, Wang, Shen (bib105) 2014; 3 Wyvekens, Topkar, Khayter, Joung, Tsai (bib210) 2015; 26 Schwank, Koo, Sasselli, Dekkers, Heo, Demircan, Sasaki, Boymans, Cuppen, van der Ent (bib172) 2013; 13 Liang, Potter, Kumar, Zou, Quintanilla, Sridharan, Carte, Chen, Roark, Ranganathan (bib102) 2015; 208 Rong, Zhu, Xu, Fu (bib161) 2014; 5 Heyer, Ehmsen, Liu (bib62) 2010; 44 Miller, Tan, Qiao, Barlow, Wang, Xia, Meng, Paschon, Leung, Hinkley (bib123) 2011; 29 Takahashi, Yamanaka (bib186) 2006; 126 Findlay, Boyle, Hause, Klein, Shendure (bib233) 2014; 513 Maddalo, Manchado, Concepcion, Bonetti, Vidigal, Han, Ogrodowski, Crippa, Rekhtman, de Stanchina (bib116) 2014; 516 Fu, Sander, Reyon, Cascio, Joung (bib42) 2014; 32 Hwang, Fu, Reyon, Maeder, Kaini, Sander, Joung, Peterson, Yeh (bib71) 2013; 8 Haft, Selengut, Mongodin, Nelson (bib57) 2005; 1 Niu, Shen, Cui, Chen, Wang, Wang, Kang, Zhao, Si, Li (bib135) 2014; 156 Yang, Grishin, Wang, Aach, Zhang, Chari, Homsy, Cai, Zhao, Fan (bib216) 2014; 5 Hai, Teng, Guo, Li, Zhou (bib58) 2014; 24 Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib118) 2013; 31 Nelson, Hakim, Ousterout, Thakore, Moreb, Castellanos Rivera, Madhavan, Pan, Ran, Yan (bib131) 2016; 351 Vartak, Raghavan (bib196) 2015; 282 Yin, Xue, Chen, Bogorad, Benedetti, Grompe, Koteliansky, Sharp, Jacks, Anderson (bib219) 2014; 32 Gantz, Jasinskiene, Tatarenkova, Fazekas, Bassett (10.1016/j.cell.2016.10.044_bib7) 2013; 4 Liu (10.1016/j.cell.2016.10.044_bib109) 2016; 167 Nihongaki (10.1016/j.cell.2016.10.044_bib133) 2015; 22 Peabody (10.1016/j.cell.2016.10.044_bib146) 1993; 12 Hai (10.1016/j.cell.2016.10.044_bib58) 2014; 24 Swiech (10.1016/j.cell.2016.10.044_bib184) 2015; 33 Jeggo (10.1016/j.cell.2016.10.044_bib75) 1998; 38 Vartak (10.1016/j.cell.2016.10.044_bib196) 2015; 282 Wang (10.1016/j.cell.2016.10.044_bib199) 2004; 15 Baltimore (10.1016/j.cell.2016.10.044_bib4) 2015; 348 Sander (10.1016/j.cell.2016.10.044_bib167) 2014; 32 Smithies (10.1016/j.cell.2016.10.044_bib179) 1985; 317 Wu (10.1016/j.cell.2016.10.044_bib209) 2014; 32 Li (10.1016/j.cell.2016.10.044_bib99) 2013; 31 Luo (10.1016/j.cell.2016.10.044_bib114) 2000; 18 Tanenbaum (10.1016/j.cell.2016.10.044_bib187) 2014; 159 Gantz (10.1016/j.cell.2016.10.044_bib45) 2015; 112 Rong (10.1016/j.cell.2016.10.044_bib161) 2014; 5 Yang (10.1016/j.cell.2016.10.044_bib217) 2016; 34 Kumar (10.1016/j.cell.2016.10.044_bib93) 2001; 12 Saleh-Gohari (10.1016/j.cell.2016.10.044_bib165) 2004; 32 Thakore (10.1016/j.cell.2016.10.044_bib189) 2016; 13 Li (10.1016/j.cell.2016.10.044_bib98) 2013; 31 Tsai (10.1016/j.cell.2016.10.044_bib193) 2014; 32 Wang (10.1016/j.cell.2016.10.044_bib203) 2015; 26 Nihongaki (10.1016/j.cell.2016.10.044_bib132) 2015; 33 Davis (10.1016/j.cell.2016.10.044_bib30) 2015; 11 Platt (10.1016/j.cell.2016.10.044_bib149) 2014; 159 Yin (10.1016/j.cell.2016.10.044_bib219) 2014; 32 Qi (10.1016/j.cell.2016.10.044_bib153) 2013; 152 Shi (10.1016/j.cell.2016.10.044_bib175) 2015; 33 Haft (10.1016/j.cell.2016.10.044_bib57) 2005; 1 Liu (10.1016/j.cell.2016.10.044_bib107) 2015; 31 Lin (10.1016/j.cell.2016.10.044_bib106) 2014; 3 Lin (10.1016/j.cell.2016.10.044_bib104) 1985; 82 Xue (10.1016/j.cell.2016.10.044_bib213) 2014; 514 Sapranauskas (10.1016/j.cell.2016.10.044_bib170) 2011; 39 Rouet (10.1016/j.cell.2016.10.044_bib163) 1994; 14 Kuscu (10.1016/j.cell.2016.10.044_bib94) 2014; 32 McDonald (10.1016/j.cell.2016.10.044_bib122) 2016; 5 Smith (10.1016/j.cell.2016.10.044_bib177) 2014; 15 Maruyama (10.1016/j.cell.2016.10.044_bib121) 2015; 33 Gasiunas (10.1016/j.cell.2016.10.044_bib48) 2012; 109 Kearns (10.1016/j.cell.2016.10.044_bib81) 2015; 12 Ramanan (10.1016/j.cell.2016.10.044_bib155) 2015; 5 Yin (10.1016/j.cell.2016.10.044_bib218) 2014; 15 Bibikova (10.1016/j.cell.2016.10.044_bib8) 2002; 161 Tabebordbar (10.1016/j.cell.2016.10.044_bib185) 2016; 351 Kim (10.1016/j.cell.2016.10.044_bib85) 2015; 12 Deveau (10.1016/j.cell.2016.10.044_bib32) 2008; 190 Maasho (10.1016/j.cell.2016.10.044_bib115) 2004; 284 Zuris (10.1016/j.cell.2016.10.044_bib232) 2015; 33 Capecchi (10.1016/j.cell.2016.10.044_bib13) 1989; 244 Miller (10.1016/j.cell.2016.10.044_bib123) 2011; 29 Chen (10.1016/j.cell.2016.10.044_bib20) 2015; 160 Liang (10.1016/j.cell.2016.10.044_bib102) 2015; 208 Long (10.1016/j.cell.2016.10.044_bib113) 2016; 351 Gupta (10.1016/j.cell.2016.10.044_bib56) 2011; 39 Choulika (10.1016/j.cell.2016.10.044_bib25) 1995; 15 Tsai (10.1016/j.cell.2016.10.044_bib194) 2015; 33 Park (10.1016/j.cell.2016.10.044_bib142) 2015; 17 Hemphill (10.1016/j.cell.2016.10.044_bib61) 2015; 137 Zhang (10.1016/j.cell.2016.10.044_bib229) 2015; 60 Hsu (10.1016/j.cell.2016.10.044_bib69) 2013; 31 Maeder (10.1016/j.cell.2016.10.044_bib117) 2013; 10 Deltcheva (10.1016/j.cell.2016.10.044_bib31) 2011; 471 Sussman (10.1016/j.cell.2016.10.044_bib183) 2004; 342 Li (10.1016/j.cell.2016.10.044_bib96) 2011; 39 Zhang (10.1016/j.cell.2016.10.044_bib227) 2011; 29 Wang (10.1016/j.cell.2016.10.044_bib205) 2016; 113 Hou (10.1016/j.cell.2016.10.044_bib66) 2013; 110 Long (10.1016/j.cell.2016.10.044_bib112) 2014; 345 Wyvekens (10.1016/j.cell.2016.10.044_bib210) 2015; 26 Polstein (10.1016/j.cell.2016.10.044_bib151) 2015; 25 Shalem (10.1016/j.cell.2016.10.044_bib174) 2015; 16 Hockemeyer (10.1016/j.cell.2016.10.044_bib65) 2016; 18 Vojta (10.1016/j.cell.2016.10.044_bib198) 2016; 44 Paquet (10.1016/j.cell.2016.10.044_bib141) 2016; 533 Biswas (10.1016/j.cell.2016.10.044_bib10) 1992; 174 Esvelt (10.1016/j.cell.2016.10.044_bib38) 2014; 3 Hwang (10.1016/j.cell.2016.10.044_bib72) 2013; 31 Porteus (10.1016/j.cell.2016.10.044_bib152) 2003; 300 Cockrell (10.1016/j.cell.2016.10.044_bib27) 2007; 36 Guilinger (10.1016/j.cell.2016.10.044_bib54) 2014; 11 Schumann (10.1016/j.cell.2016.10.044_bib171) 2015; 112 Gantz (10.1016/j.cell.2016.10.044_bib44) 2015; 348 Cheng (10.1016/j.cell.2016.10.044_bib23) 2014; 588 Gaj (10.1016/j.cell.2016.10.044_bib43) 2013; 31 Fonfara (10.1016/j.cell.2016.10.044_bib39) 2016; 532 Dow (10.1016/j.cell.2016.10.044_bib36) 2015; 33 Fu (10.1016/j.cell.2016.10.044_bib42) 2014; 32 Suda (10.1016/j.cell.2016.10.044_bib182) 2007; 15 Doudna (10.1016/j.cell.2016.10.044_bib35) 2014; 346 Guilinger (10.1016/j.cell.2016.10.044_bib55) 2014; 32 Shalem (10.1016/j.cell.2016.10.044_bib173) 2014; 343 Jinek (10.1016/j.cell.2016.10.044_bib79) 2013; 2 Grizot (10.1016/j.cell.2016.10.044_bib53) 2009; 37 Ding (10.1016/j.cell.2016.10.044_bib34) 2014; 115 Chakraborty (10.1016/j.cell.2016.10.044_bib16) 2014; 3 Maddalo (10.1016/j.cell.2016.10.044_bib116) 2014; 516 Mou (10.1016/j.cell.2016.10.044_bib128) 2015; 7 Yang (10.1016/j.cell.2016.10.044_bib216) 2014; 5 Cho (10.1016/j.cell.2016.10.044_bib24) 2013; 31 Polstein (10.1016/j.cell.2016.10.044_bib150) 2015; 11 Slaymaker (10.1016/j.cell.2016.10.044_bib176) 2016; 351 Li (10.1016/j.cell.2016.10.044_bib101) 2015; 4 Ran (10.1016/j.cell.2016.10.044_bib158) 2015; 520 Lin (10.1016/j.cell.2016.10.044_bib105) 2014; 3 Ousterout (10.1016/j.cell.2016.10.044_bib139) 2015; 6 Cencic (10.1016/j.cell.2016.10.044_bib15) 2014; 9 Li (10.1016/j.cell.2016.10.044_bib97) 2011; 39 Hammond (10.1016/j.cell.2016.10.044_bib59) 2016; 34 Pinder (10.1016/j.cell.2016.10.044_bib148) 2015; 43 Ran (10.1016/j.cell.2016.10.044_bib157) 2013; 8 Takahashi (10.1016/j.cell.2016.10.044_bib186) 2006; 126 Nishida (10.1016/j.cell.2016.10.044_bib134) 2016; 353 Wang (10.1016/j.cell.2016.10.044_bib200) 2013; 153 Wang (10.1016/j.cell.2016.10.044_bib202) 2014; 9 Gilbert (10.1016/j.cell.2016.10.044_bib49) 2013; 154 Kleinstiver (10.1016/j.cell.2016.10.044_bib87) 2015; 33 Findlay (10.1016/j.cell.2016.10.044_bib233) 2014; 513 Carroll (10.1016/j.cell.2016.10.044_bib14) 2008; 15 Miyaoka (10.1016/j.cell.2016.10.044_bib125) 2016; 6 Zhang (10.1016/j.cell.2016.10.044_bib228) 2014; 4 Ding (10.1016/j.cell.2016.10.044_bib33) 2013; 12 Kleinstiver (10.1016/j.cell.2016.10.044_bib90) 2016; 34 Mandegar (10.1016/j.cell.2016.10.044_bib120) 2016; 18 Hwang (10.1016/j.cell.2016.10.044_bib71) 2013; 8 Cong (10.1016/j.cell.2016.10.044_bib28) 2013; 339 Wang (10.1016/j.cell.2016.10.044_bib201) 2014; 343 Chavez (10.1016/j.cell.2016.10.044_bib19) 2016; 13 Joung (10.1016/j.cell.2016.10.044_bib80) 2013; 14 Rudin (10.1016/j.cell.2016.10.044_bib164) 1989; 122 Liao (10.1016/j.cell.2016.10.044_bib103) 2015; 47 Hirano (10.1016/j.cell.2016.10.044_bib64) 2016; 164 Li (10.1016/j.cell.2016.10.044_bib100) 2015; 96 Pattanayak (10.1016/j.cell.2016.10.044_bib144) 2011; 8 Gori (10.1016/j.cell.2016.10.044_bib52) 2015; 26 Chang (10.1016/j.cell.2016.10.044_bib17) 2013; 23 Tsai (10.1016/j.cell.2016.10.044_bib192) 2016; 17 Oakes (10.1016/j.cell.2016.10.044_bib137) 2016; 34 Mironov (10.1016/j.cell.2016.10.044_bib124) 2004; 4 Smith (10.1016/j.cell.2016.10.044_bib178) 2015; 23 Morita (10.1016/j.cell.2016.10.044_bib126) 2016; 34 Truong (10.1016/j.cell.2016.10.044_bib191) 2015; 43 Richardson (10.1016/j.cell.2016.10.044_bib159) 2016; 34 Gilbert (10.1016/j.cell.2016.10.044_bib50) 2014; 159 Yu (10.1016/j.cell.2016.10.044_bib221) 2007; 318 Yu (10.1016/j.cell.2016.10.044_bib222) 2015; 16 Jiang (10.1016/j.cell.2016.10.044_bib77) 2016; 351 Jain (10.1016/j.cell.2016.10.044_bib73) 2016; 55 Wright (10.1016/j.cell.2016.10.044_bib206) 2015; 112 Kleinstiver (10.1016/j.cell.2016.10.044_bib88) 2015; 523 Schwank (10.1016/j.cell.2016.10.044_bib172) 2013; 13 Jinek (10.1016/j.cell.2016.10.044_bib78) 2012; 337 Xie (10.1016/j.cell.2016.10.044_bib211) 2014; 24 Bibikova (10.1016/j.cell.2016.10.044_bib9) 2003; 300 Müller (10.1016/j.cell.2016.10.044_bib129) 2016; 24 Heckl (10.1016/j.cell.2016.10.044_bib60) 2014; 32 Jiang (10.1016/j.cell.2016.10.044_bib76) 2013; 31 Ramakrishna (10.1016/j.cell.2016.10.044_bib154) 2014; 24 Veres (10.1016/j.cell.2016.10.044_bib197) 2014; 15 O’Geen (10.1016/j.cell.2016.10.044_bib136) 2015; 43 Nelson (10.1016/j.cell.2016.10.044_bib131) 2016; 351 Kim (10.1016/j.cell.2016.10.044_bib84) 2014; 24 Parnas (10.1016/j.cell.2016.10.044_bib143) 2015; 162 González (10.1016/j.cell.2016.10.044_bib51) 2014; 15 Byrne (10.1016/j.cell.2016.10.044_bib12) 2014; 546 Crosetto (10.1016/j.cell.2016.10.044_bib29) 2013; 10 Zeitelhofer (10.1016/j.cell.2016.10.044_bib224) 2007; 2 Oye (10.1016/j.cell.2016.10.044_bib140) 2014; 345 Wang (10.1016/j.cell.2016.10.044_bib204) 2015; 6 Zetsche (10.1016/j.cell.2016.10.044_bib225) 2015; 163 Hsu (10.1016/j.cell.2016.10.044_bib70) 2014; 157 Ran (10.1016/j.cell.2016.10.044_bib156) 2013; 154 Keung (10.1016/j.cell.2016.10.044_bib82) 2015; 16 Hou (10.1016/j.cell.2016.10.044_bib67) 2015; 5 Chu (10.1016/j.cell.2016.10.044_bib26) 2015; 33 Wu (10.1016/j.cell.2016.10.044_bib208) 2013; 13 Thakore (10.1016/j.cell.2016.10.044_bib188) 2015; 12 Chen (10.1016/j.cell.2016.10.044_bib21) 2015; 17 Mali (10.1016/j.cell.2016.10.044_bib118) 2013; 31 Sánchez-Rivera (10.1016/j.cell.2016.10.044_bib166) 2014; 516 Friedland (10.1016/j.cell.2016.10.044_bib40) 2015; 16 Perez-Pinera (10.1016/j.cell.2016.10.044_bib147) 2013; 10 Jasin (10.1016/j.cell.2016.10.044_bib74) 1996; 12 Robert (10.1016/j.cell.2016.10.044_bib160) 2015; 7 Boch (10.1016/j.cell.2016.10.044_bib11) 2009; 326 Pattanayak (10.1016/j.cell.2016.10.044_bib145) 2013; 31 Urnov (10.1016/j.cell.2016.10.044_bib195) 2010; 11 Rosen (10.1016/j.cell.2016.10.044_bib162) 2006; 34 Osborn (10.1016/j.cell.2016.10.044_bib138) 2015; 26 Bartus (10.1016/j.cell.2016.10.044_bib6) 1998; 281 Yang (10.1016/j.cell.2016.10.044_bib214) 2013; 154 Yin (10.1016/j.cell.2016.10.044_bib220) 2016; 34 Thomas (10.1016/j.cell.2016.10.044_bib190) 1986; 44 al Yacoub (10.1016/j.cell.2016.10.044_bib1) 2007; 9 Komor (10.1016/j.cell.2016.10.044_bib91) 2016; 533 Amsellem (10 28431253 - Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005. |
References_xml | – volume: 13 start-page: 653 year: 2013 end-page: 658 ident: bib172 article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients publication-title: Cell Stem Cell – volume: 318 start-page: 1917 year: 2007 end-page: 1920 ident: bib221 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science – volume: 31 start-page: 681 year: 2013 end-page: 683 ident: bib98 article-title: Heritable gene targeting in the mouse and rat using a CRISPR-Cas system publication-title: Nat. Biotechnol. – volume: 34 start-page: 328 year: 2016 end-page: 333 ident: bib220 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. – volume: 13 start-page: 563 year: 2016 end-page: 567 ident: bib19 article-title: Comparison of Cas9 activators in multiple species publication-title: Nat. Methods – volume: 10 start-page: 361 year: 2013 end-page: 365 ident: bib29 article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing publication-title: Nat. Methods – volume: 36 start-page: 184 year: 2007 end-page: 204 ident: bib27 article-title: Gene delivery by lentivirus vectors publication-title: Mol. Biotechnol. – volume: 6 start-page: 55 year: 2015 ident: bib204 article-title: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment publication-title: Mol. Autism – volume: 281 start-page: 1161 year: 1998 end-page: 1162 ident: bib6 article-title: Sustained delivery of proteins for novel therapeutic agents publication-title: Science – volume: 300 start-page: 764 year: 2003 ident: bib9 article-title: Enhancing gene targeting with designed zinc finger nucleases publication-title: Science – volume: 31 start-page: 397 year: 2013 end-page: 405 ident: bib43 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. – volume: 9 start-page: e109213 year: 2014 ident: bib15 article-title: Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage publication-title: PLoS ONE – volume: 5 start-page: 258 year: 2014 end-page: 260 ident: bib161 article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template publication-title: Protein Cell – volume: 244 start-page: 1288 year: 1989 end-page: 1292 ident: bib13 article-title: Altering the genome by homologous recombination publication-title: Science – volume: 12 start-page: 224 year: 1996 end-page: 228 ident: bib74 article-title: Genetic manipulation of genomes with rare-cutting endonucleases publication-title: Trends Genet. – volume: 15 start-page: 215 year: 2014 end-page: 226 ident: bib51 article-title: An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells publication-title: Cell Stem Cell – volume: 32 start-page: 279 year: 2014 end-page: 284 ident: bib42 article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs publication-title: Nat. Biotechnol. – volume: 546 start-page: 119 year: 2014 end-page: 138 ident: bib12 article-title: Genome editing in human stem cells publication-title: Methods Enzymol. – volume: 33 start-page: 543 year: 2015 end-page: 548 ident: bib26 article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells publication-title: Nat. Biotechnol. – volume: 16 start-page: 159 year: 2015 end-page: 171 ident: bib82 article-title: Chromatin regulation at the frontier of synthetic biology publication-title: Nat. Rev. Genet. – volume: 159 start-page: 440 year: 2014 end-page: 455 ident: bib149 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell – volume: 13 start-page: 127 year: 2016 end-page: 137 ident: bib189 article-title: Editing the epigenome: technologies for programmable transcription and epigenetic modulation publication-title: Nat. Methods – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: bib91 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 17 start-page: 300 year: 2016 end-page: 312 ident: bib192 article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases publication-title: Nat. Rev. Genet. – volume: 154 start-page: 1380 year: 2013 end-page: 1389 ident: bib156 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell – volume: 12 start-page: 237 year: 2015 end-page: 243 ident: bib85 article-title: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells publication-title: Nat. Methods – volume: 190 start-page: 1390 year: 2008 end-page: 1400 ident: bib32 article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus publication-title: J. Bacteriol. – volume: 3 start-page: e186 year: 2014 ident: bib105 article-title: The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo publication-title: Mol. Ther. Nucleic Acids – volume: 26 start-page: 425 year: 2015 end-page: 431 ident: bib210 article-title: Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing publication-title: Hum. Gene Ther. – volume: 32 start-page: 577 year: 2014 end-page: 582 ident: bib55 article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification publication-title: Nat. Biotechnol. – volume: 44 start-page: 113 year: 2010 end-page: 139 ident: bib62 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. – volume: 2 start-page: 1692 year: 2007 end-page: 1704 ident: bib224 article-title: High-efficiency transfection of mammalian neurons via nucleofection publication-title: Nat. Protoc. – volume: 12 start-page: 1893 year: 2001 end-page: 1905 ident: bib93 article-title: Systematic determination of the packaging limit of lentiviral vectors publication-title: Hum. Gene Ther. – volume: 167 start-page: 233 year: 2016 end-page: 247 ident: bib109 article-title: Editing DNA methylation in the mammalian genome publication-title: Cell – volume: 10 start-page: 977 year: 2013 end-page: 979 ident: bib117 article-title: CRISPR RNA-guided activation of endogenous human genes publication-title: Nat. Methods – volume: 29 start-page: 143 year: 2011 end-page: 148 ident: bib123 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. – volume: 51 start-page: 835 year: 2013 end-page: 843 ident: bib130 article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis publication-title: Genesis – volume: 5 start-page: 10833 year: 2015 ident: bib155 article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus publication-title: Sci. Rep. – volume: 351 start-page: 407 year: 2016 end-page: 411 ident: bib185 article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells publication-title: Science – volume: 43 start-page: 6450 year: 2015 end-page: 6458 ident: bib191 article-title: Development of an intein-mediated split-Cas9 system for gene therapy publication-title: Nucleic Acids Res. – volume: 4 start-page: 143 year: 2015 end-page: 154 ident: bib101 article-title: Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9 publication-title: Stem Cell Reports – volume: 9 start-page: 1423 year: 2003 end-page: 1427 ident: bib2 article-title: Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein publication-title: Nat. Med. – volume: 24 start-page: 636 year: 2016 end-page: 644 ident: bib129 article-title: Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome publication-title: Mol. Ther. – volume: 18 start-page: 33 year: 2000 end-page: 37 ident: bib114 article-title: Synthetic DNA delivery systems publication-title: Nat. Biotechnol. – volume: 34 start-page: 863 year: 2016 end-page: 868 ident: bib86 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. – volume: 110 start-page: 15644 year: 2013 end-page: 15649 ident: bib66 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 636 year: 2010 end-page: 646 ident: bib195 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nat. Rev. Genet. – volume: 326 start-page: 1509 year: 2009 end-page: 1512 ident: bib11 article-title: Breaking the code of DNA binding specificity of TAL-type III effectors publication-title: Science – volume: 24 start-page: 372 year: 2014 end-page: 375 ident: bib58 article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system publication-title: Cell Res. – volume: 326 start-page: 1501 year: 2009 ident: bib127 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science – volume: 140 start-page: 4982 year: 2013 end-page: 4987 ident: bib68 article-title: Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish publication-title: Development – volume: 34 start-page: 78 year: 2016 end-page: 83 ident: bib59 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. – volume: 31 start-page: 822 year: 2013 end-page: 826 ident: bib41 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. – volume: 6 start-page: 23549 year: 2016 ident: bib125 article-title: Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing publication-title: Sci. Rep. – volume: 154 start-page: 442 year: 2013 end-page: 451 ident: bib49 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell – volume: 284 start-page: 133 year: 2004 end-page: 140 ident: bib115 article-title: Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system publication-title: J. Immunol. Methods – volume: 4 start-page: 220 year: 2013 end-page: 228 ident: bib7 article-title: Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system publication-title: Cell Rep. – volume: 4 start-page: 773 year: 2004 end-page: 781 ident: bib124 article-title: What is regenerative medicine? Emergence of applied stem cell and developmental biology publication-title: Expert Opin. Biol. Ther. – volume: 26 start-page: 432 year: 2015 end-page: 442 ident: bib203 article-title: Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses publication-title: Hum. Gene Ther. – volume: 33 start-page: 139 year: 2015 end-page: 142 ident: bib226 article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation publication-title: Nat. Biotechnol. – volume: 39 start-page: 381 year: 2011 end-page: 392 ident: bib56 article-title: Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases publication-title: Nucleic Acids Res. – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: bib118 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 156 start-page: 836 year: 2014 end-page: 843 ident: bib135 article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos publication-title: Cell – volume: 10 start-page: 973 year: 2013 end-page: 976 ident: bib147 article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors publication-title: Nat. Methods – volume: 43 start-page: 9379 year: 2015 end-page: 9392 ident: bib148 article-title: Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing publication-title: Nucleic Acids Res. – year: 2016 ident: bib168 article-title: Genome-scale CRISPR pooled screens publication-title: Anal. Biochem. – volume: 31 start-page: 3676 year: 2015 end-page: 3678 ident: bib107 article-title: CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation publication-title: Bioinformatics – volume: 517 start-page: 583 year: 2015 end-page: 588 ident: bib92 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature – volume: 13 start-page: 659 year: 2013 end-page: 662 ident: bib208 article-title: Correction of a genetic disease in mouse via use of CRISPR-Cas9 publication-title: Cell Stem Cell – volume: 15 start-page: 27 year: 2014 end-page: 30 ident: bib197 article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing publication-title: Cell Stem Cell – volume: 17 start-page: 213 year: 2015 end-page: 220 ident: bib142 article-title: Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9 publication-title: Cell Stem Cell – volume: 353 start-page: aaf8729 year: 2016 ident: bib134 article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems publication-title: Science – volume: 9 start-page: 579 year: 2007 end-page: 584 ident: bib1 article-title: Optimized production and concentration of lentiviral vectors containing large inserts publication-title: J. Gene Med. – volume: 513 start-page: 120 year: 2014 end-page: 123 ident: bib233 article-title: Saturation editing of genomic regions by multiplex homology-directed repair publication-title: Nature – volume: 82 start-page: 1391 year: 1985 end-page: 1395 ident: bib104 article-title: Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences publication-title: Proc. Natl. Acad. Sci. USA – volume: 588 start-page: 3954 year: 2014 end-page: 3958 ident: bib23 article-title: Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9 publication-title: FEBS Lett. – volume: 25 start-page: 1158 year: 2015 end-page: 1169 ident: bib151 article-title: Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators publication-title: Genome Res. – volume: 348 start-page: 442 year: 2015 end-page: 444 ident: bib44 article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science – volume: 208 start-page: 44 year: 2015 end-page: 53 ident: bib102 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. – volume: 34 start-page: 334 year: 2016 end-page: 338 ident: bib217 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib78 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 60 start-page: 242 year: 2015 end-page: 255 ident: bib229 article-title: DNase H Activity of Neisseria meningitidis Cas9 publication-title: Mol. Cell – volume: 11 start-page: 429 year: 2014 end-page: 435 ident: bib54 article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity publication-title: Nat. Methods – volume: 33 start-page: 538 year: 2015 end-page: 542 ident: bib121 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat. Biotechnol. – volume: 18 start-page: 80 year: 2010 end-page: 86 ident: bib207 article-title: Effect of genome size on AAV vector packaging publication-title: Mol. Ther. – volume: 39 start-page: 359 year: 2011 end-page: 372 ident: bib96 article-title: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain publication-title: Nucleic Acids Res. – volume: 12 start-page: 595 year: 1993 end-page: 600 ident: bib146 article-title: The RNA binding site of bacteriophage MS2 coat protein publication-title: EMBO J. – volume: 112 start-page: E6736 year: 2015 end-page: E6743 ident: bib45 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 233 year: 2013 end-page: 239 ident: bib76 article-title: RNA-guided editing of bacterial genomes using CRISPR-Cas systems publication-title: Nat. Biotechnol. – volume: 41 start-page: 9049 year: 2013 end-page: 9061 ident: bib215 article-title: Optimization of scarless human stem cell genome editing publication-title: Nucleic Acids Res. – volume: 9 start-page: e115987 year: 2014 ident: bib202 article-title: CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection publication-title: PLoS ONE – volume: 5 start-page: 5507 year: 2014 ident: bib216 article-title: Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells publication-title: Nat. Commun. – volume: 21 start-page: 562 year: 2013 end-page: 567 ident: bib47 article-title: RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? publication-title: Trends Microbiol. – volume: 32 start-page: 670 year: 2014 end-page: 676 ident: bib209 article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells publication-title: Nat. Biotechnol. – volume: 25 start-page: 1298 year: 2007 end-page: 1306 ident: bib111 article-title: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery publication-title: Nat. Biotechnol. – volume: 153 start-page: 910 year: 2013 end-page: 918 ident: bib200 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bib119 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 33 start-page: 755 year: 2015 end-page: 760 ident: bib132 article-title: Photoactivatable CRISPR-Cas9 for optogenetic genome editing publication-title: Nat. Biotechnol. – volume: 12 start-page: 393 year: 2013 end-page: 394 ident: bib33 article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs publication-title: Cell Stem Cell – volume: 3 start-page: e03401 year: 2014 ident: bib38 article-title: Concerning RNA-guided gene drives for the alteration of wild populations publication-title: eLife – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: bib225 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell – volume: 23 start-page: 465 year: 2013 end-page: 472 ident: bib17 article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos publication-title: Cell Res. – volume: 31 start-page: 684 year: 2013 end-page: 686 ident: bib99 article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems publication-title: Nat. Biotechnol. – volume: 34 start-page: 4791 year: 2006 end-page: 4800 ident: bib162 article-title: Homing endonuclease I-CreI derivatives with novel DNA target specificities publication-title: Nucleic Acids Res. – volume: 160 start-page: 339 year: 2015 end-page: 350 ident: bib223 article-title: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds publication-title: Cell – volume: 32 start-page: 347 year: 2014 end-page: 355 ident: bib167 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. – volume: 2 start-page: e00471 year: 2013 ident: bib79 article-title: RNA-programmed genome editing in human cells publication-title: eLife – volume: 516 start-page: 423 year: 2014 end-page: 427 ident: bib116 article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system publication-title: Nature – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bib158 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature – volume: 12 start-page: 1143 year: 2015 end-page: 1149 ident: bib188 article-title: Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements publication-title: Nat. Methods – volume: 10 start-page: 1842 year: 2015 end-page: 1859 ident: bib108 article-title: Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells publication-title: Nat. Protoc. – volume: 351 start-page: 403 year: 2016 end-page: 407 ident: bib131 article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy publication-title: Science – volume: 348 start-page: 36 year: 2015 end-page: 38 ident: bib4 article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification publication-title: Science – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: bib205 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: e60 year: 2005 ident: bib57 article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes publication-title: PLoS Comput. Biol. – volume: 39 start-page: 6315 year: 2011 end-page: 6325 ident: bib97 article-title: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes publication-title: Nucleic Acids Res. – volume: 115 start-page: 488 year: 2014 end-page: 492 ident: bib34 article-title: Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing publication-title: Circ. Res. – volume: 15 start-page: 1968 year: 1995 end-page: 1973 ident: bib25 article-title: Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. – volume: 112 start-page: 10437 year: 2015 end-page: 10442 ident: bib171 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 661 year: 2015 end-page: 667 ident: bib175 article-title: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains publication-title: Nat. Biotechnol. – volume: 16 start-page: 299 year: 2015 end-page: 311 ident: bib174 article-title: High-throughput functional genomics using CRISPR-Cas9 publication-title: Nat. Rev. Genet. – volume: 300 start-page: 763 year: 2003 ident: bib152 article-title: Chimeric nucleases stimulate gene targeting in human cells publication-title: Science – volume: 342 start-page: 31 year: 2004 end-page: 41 ident: bib183 article-title: Isolation and characterization of new homing endonuclease specificities at individual target site positions publication-title: J. Mol. Biol. – volume: 7 start-page: 93 year: 2015 ident: bib160 article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing publication-title: Genome Med. – volume: 33 start-page: 1293 year: 2015 end-page: 1298 ident: bib87 article-title: Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition publication-title: Nat. Biotechnol. – volume: 24 start-page: 1012 year: 2014 end-page: 1019 ident: bib84 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. – volume: 529 start-page: 490 year: 2016 end-page: 495 ident: bib89 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature – volume: 34 start-page: 1060 year: 2016 end-page: 1065 ident: bib126 article-title: Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions publication-title: Nat. Biotechnol. – volume: 23 start-page: 570 year: 2015 end-page: 577 ident: bib178 article-title: Efficient and allele-specific genome editing of disease loci in human iPSCs publication-title: Mol. Ther. – volume: 15 start-page: 541 year: 2014 end-page: 555 ident: bib218 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. – volume: 33 start-page: 187 year: 2015 end-page: 197 ident: bib194 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. – volume: 8 start-page: e68708 year: 2013 ident: bib71 article-title: Heritable and precise zebrafish genome editing using a CRISPR-Cas system publication-title: PLoS ONE – volume: 160 start-page: 1246 year: 2015 end-page: 1260 ident: bib20 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell – volume: 26 start-page: 114 year: 2015 end-page: 126 ident: bib138 article-title: Fanconi anemia gene editing by the CRISPR/Cas9 system publication-title: Hum. Gene Ther. – volume: 37 start-page: 5405 year: 2009 end-page: 5419 ident: bib53 article-title: Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease publication-title: Nucleic Acids Res. – volume: 11 start-page: 198 year: 2015 end-page: 200 ident: bib150 article-title: A light-inducible CRISPR-Cas9 system for control of endogenous gene activation publication-title: Nat. Chem. Biol. – volume: 15 start-page: 1463 year: 2008 end-page: 1468 ident: bib14 article-title: Progress and prospects: zinc-finger nucleases as gene therapy agents publication-title: Gene Ther. – volume: 12 start-page: 326 year: 2015 end-page: 328 ident: bib18 article-title: Highly efficient Cas9-mediated transcriptional programming publication-title: Nat. Methods – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bib28 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 195 start-page: 331 year: 2013 end-page: 348 ident: bib110 article-title: Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions publication-title: Genetics – volume: 16 start-page: 257 year: 2015 ident: bib40 article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications publication-title: Genome Biol. – volume: 33 start-page: 73 year: 2015 end-page: 80 ident: bib232 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib157 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: bib70 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 18 start-page: 573 year: 2016 end-page: 586 ident: bib65 article-title: Induced pluripotent stem cells meet genome editing publication-title: Cell Stem Cell – volume: 15 start-page: 405 year: 2004 end-page: 413 ident: bib199 article-title: Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo publication-title: Hum. Gene Ther. – volume: 33 start-page: 390 year: 2015 end-page: 394 ident: bib36 article-title: Inducible in vivo genome editing with CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 32 start-page: 677 year: 2014 end-page: 683 ident: bib94 article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease publication-title: Nat. Biotechnol. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib186 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 3 start-page: 940 year: 2014 end-page: 947 ident: bib16 article-title: A CRISPR/Cas9-based system for reprogramming cell lineage specification publication-title: Stem Cell Reports – volume: 7 start-page: 10548 year: 2016 ident: bib180 article-title: RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency publication-title: Nat. Commun. – volume: 3 start-page: e04766 year: 2014 ident: bib106 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife – volume: 34 start-page: 339 year: 2016 end-page: 344 ident: bib159 article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA publication-title: Nat. Biotechnol. – volume: 14 start-page: 8096 year: 1994 end-page: 8106 ident: bib163 article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease publication-title: Mol. Cell. Biol. – volume: 351 start-page: 84 year: 2016 end-page: 88 ident: bib176 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science – volume: 39 start-page: 9275 year: 2011 end-page: 9282 ident: bib170 article-title: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli publication-title: Nucleic Acids Res. – volume: 112 start-page: 2984 year: 2015 end-page: 2989 ident: bib206 article-title: Rational design of a split-Cas9 enzyme complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 12 year: 2014 end-page: 13 ident: bib177 article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs publication-title: Cell Stem Cell – volume: 4 start-page: 5405 year: 2014 ident: bib228 article-title: Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells publication-title: Sci. Rep. – volume: 22 start-page: 169 year: 2015 end-page: 174 ident: bib133 article-title: CRISPR-Cas9-based photoactivatable transcription system publication-title: Chem. Biol. – volume: 31 start-page: 839 year: 2013 end-page: 843 ident: bib145 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. – volume: 32 start-page: 569 year: 2014 end-page: 576 ident: bib193 article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing publication-title: Nat. Biotechnol. – volume: 14 start-page: 49 year: 2013 end-page: 55 ident: bib80 article-title: TALENs: a widely applicable technology for targeted genome editing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 24 start-page: 142 year: 2014 end-page: 153 ident: bib3 article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair publication-title: Genome Res. – volume: 162 start-page: 675 year: 2015 end-page: 686 ident: bib143 article-title: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks publication-title: Cell – volume: 33 start-page: 510 year: 2015 end-page: 517 ident: bib63 article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers publication-title: Nat. Biotechnol. – volume: 471 start-page: 602 year: 2011 end-page: 607 ident: bib31 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature – volume: 509 start-page: 487 year: 2014 end-page: 491 ident: bib231 article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells publication-title: Nature – volume: 31 start-page: 227 year: 2013 end-page: 229 ident: bib72 article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system publication-title: Nat. Biotechnol. – volume: 18 start-page: 541 year: 2016 end-page: 553 ident: bib120 article-title: CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs publication-title: Cell Stem Cell – volume: 9 start-page: e113232 year: 2014 ident: bib95 article-title: Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53 publication-title: PLoS ONE – volume: 164 start-page: 950 year: 2016 end-page: 961 ident: bib64 article-title: Structure and engineering of francisella novicida Cas9 publication-title: Cell – volume: 6 start-page: 6244 year: 2015 ident: bib139 article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy publication-title: Nat. Commun. – volume: 174 start-page: 5593 year: 1992 end-page: 5596 ident: bib10 article-title: Efficiency of homologous intermolecular recombination at different locations on the Bacillus subtilis chromosome publication-title: J. Bacteriol. – volume: 161 start-page: 1169 year: 2002 end-page: 1175 ident: bib8 article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases publication-title: Genetics – volume: 44 start-page: 419 year: 1986 end-page: 428 ident: bib190 article-title: High frequency targeting of genes to specific sites in the mammalian genome publication-title: Cell – volume: 315 start-page: 1709 year: 2007 end-page: 1712 ident: bib5 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science – volume: 351 start-page: 867 year: 2016 end-page: 871 ident: bib77 article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage publication-title: Science – volume: 151 start-page: 1474 year: 2012 end-page: 1487 ident: bib181 article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression publication-title: Cell – volume: 533 start-page: 125 year: 2016 end-page: 129 ident: bib141 article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 publication-title: Nature – volume: 11 start-page: 783 year: 2014 end-page: 784 ident: bib169 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods – volume: 96 start-page: 2381 year: 2015 end-page: 2393 ident: bib100 article-title: Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9 publication-title: J. Gen. Virol. – volume: 2 start-page: 16009 year: 2016 ident: bib212 article-title: A CRISPR-based approach for targeted DNA demethylation publication-title: Cell Discov. – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: bib48 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 827 year: 2013 end-page: 832 ident: bib69 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat. Biotechnol. – volume: 10 start-page: 1116 year: 2013 end-page: 1121 ident: bib37 article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing publication-title: Nat. Methods – volume: 17 start-page: 233 year: 2015 end-page: 244 ident: bib21 article-title: Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9 publication-title: Cell Stem Cell – volume: 345 start-page: 1184 year: 2014 end-page: 1188 ident: bib112 article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA publication-title: Science – volume: 24 start-page: 1020 year: 2014 end-page: 1027 ident: bib154 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. – volume: 43 start-page: 3389 year: 2015 end-page: 3404 ident: bib136 article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture publication-title: Nucleic Acids Res. – volume: 345 start-page: 626 year: 2014 end-page: 628 ident: bib140 article-title: Biotechnology. Regulating gene drives publication-title: Science – volume: 22 start-page: 404 year: 2015 end-page: 412 ident: bib230 article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus publication-title: Gene Ther. – volume: 159 start-page: 635 year: 2014 end-page: 646 ident: bib187 article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell – volume: 343 start-page: 80 year: 2014 end-page: 84 ident: bib201 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science – volume: 346 start-page: 1258096 year: 2014 ident: bib35 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – volume: 15 start-page: 2063 year: 2007 end-page: 2069 ident: bib182 article-title: Hydrodynamic gene delivery: its principles and applications publication-title: Mol. Ther. – volume: 44 start-page: 5615 year: 2016 end-page: 5628 ident: bib198 article-title: Repurposing the CRISPR-Cas9 system for targeted DNA methylation publication-title: Nucleic Acids Res. – volume: 122 start-page: 519 year: 1989 end-page: 534 ident: bib164 article-title: Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae publication-title: Genetics – volume: 32 start-page: 551 year: 2014 end-page: 553 ident: bib219 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat. Biotechnol. – volume: 282 start-page: 4289 year: 2015 end-page: 4294 ident: bib196 article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing publication-title: FEBS J. – volume: 24 start-page: 1526 year: 2014 end-page: 1533 ident: bib211 article-title: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac publication-title: Genome Res. – volume: 351 start-page: 400 year: 2016 end-page: 403 ident: bib113 article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy publication-title: Science – volume: 29 start-page: 149 year: 2011 end-page: 153 ident: bib227 article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription publication-title: Nat. Biotechnol. – volume: 32 start-page: 3683 year: 2004 end-page: 3688 ident: bib165 article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells publication-title: Nucleic Acids Res. – volume: 16 start-page: 142 year: 2015 end-page: 147 ident: bib222 article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells publication-title: Cell Stem Cell – volume: 5 start-page: 866 year: 2016 end-page: 874 ident: bib122 article-title: Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation publication-title: Biol. Open – volume: 7 start-page: 53 year: 2015 ident: bib128 article-title: Precision cancer mouse models through genome editing with CRISPR-Cas9 publication-title: Genome Med. – volume: 34 start-page: 869 year: 2016 end-page: 874 ident: bib90 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. – volume: 468 start-page: 67 year: 2010 end-page: 71 ident: bib46 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature – volume: 317 start-page: 230 year: 1985 end-page: 234 ident: bib179 article-title: Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination publication-title: Nature – volume: 11 start-page: 316 year: 2015 end-page: 318 ident: bib30 article-title: Small molecule-triggered Cas9 protein with improved genome-editing specificity publication-title: Nat. Chem. Biol. – volume: 26 start-page: 443 year: 2015 end-page: 451 ident: bib52 article-title: Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy publication-title: Hum. Gene Ther. – volume: 8 start-page: 765 year: 2011 end-page: 770 ident: bib144 article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection publication-title: Nat. Methods – volume: 38 start-page: 185 year: 1998 end-page: 218 ident: bib75 article-title: DNA breakage and repair publication-title: Adv. Genet. – volume: 12 start-page: 401 year: 2015 end-page: 403 ident: bib81 article-title: Functional annotation of native enhancers with a Cas9-histone demethylase fusion publication-title: Nat. Methods – volume: 47 start-page: 469 year: 2015 end-page: 478 ident: bib103 article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells publication-title: Nat. Genet. – volume: 23 start-page: 1163 year: 2013 end-page: 1171 ident: bib22 article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system publication-title: Cell Res. – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: bib173 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science – volume: 523 start-page: 481 year: 2015 end-page: 485 ident: bib88 article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities publication-title: Nature – volume: 33 start-page: 102 year: 2015 end-page: 106 ident: bib184 article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 516 start-page: 428 year: 2014 end-page: 431 ident: bib166 article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing publication-title: Nature – volume: 5 start-page: 15577 year: 2015 ident: bib67 article-title: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection publication-title: Sci. Rep. – volume: 137 start-page: 5642 year: 2015 end-page: 5645 ident: bib61 article-title: Optical Control of CRISPR/Cas9 Gene Editing publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 12440 year: 2016 end-page: 12444 ident: bib73 article-title: Development of light-activated CRISPR using guide RNAs with photocleavable protectors publication-title: Angewandte Chemie International Edition – volume: 159 start-page: 647 year: 2014 end-page: 661 ident: bib50 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell – volume: 31 start-page: 230 year: 2013 end-page: 232 ident: bib24 article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease publication-title: Nat. Biotechnol. – volume: 514 start-page: 380 year: 2014 end-page: 384 ident: bib213 article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver publication-title: Nature – volume: 154 start-page: 1370 year: 2013 end-page: 1379 ident: bib214 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell – volume: 532 start-page: 517 year: 2016 end-page: 521 ident: bib39 article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA publication-title: Nature – volume: 34 start-page: 646 year: 2016 end-page: 651 ident: bib137 article-title: Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch publication-title: Nat. Biotechnol. – volume: 32 start-page: 941 year: 2014 end-page: 946 ident: bib60 article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing publication-title: Nat. Biotechnol. – volume: 152 start-page: 1173 year: 2013 end-page: 1183 ident: bib153 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell – volume: 26 start-page: 425 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib210 article-title: Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.084 – volume: 162 start-page: 675 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib143 article-title: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks publication-title: Cell doi: 10.1016/j.cell.2015.06.059 – volume: 10 start-page: 361 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib29 article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.2408 – volume: 33 start-page: 510 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib63 article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3199 – volume: 300 start-page: 763 year: 2003 ident: 10.1016/j.cell.2016.10.044_bib152 article-title: Chimeric nucleases stimulate gene targeting in human cells publication-title: Science doi: 10.1126/science.1078395 – volume: 345 start-page: 626 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib140 article-title: Biotechnology. Regulating gene drives publication-title: Science doi: 10.1126/science.1254287 – volume: 31 start-page: 233 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib76 article-title: RNA-guided editing of bacterial genomes using CRISPR-Cas systems publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2508 – volume: 15 start-page: 1968 year: 1995 ident: 10.1016/j.cell.2016.10.044_bib25 article-title: Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.4.1968 – volume: 24 start-page: 142 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib3 article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair publication-title: Genome Res. doi: 10.1101/gr.161638.113 – volume: 154 start-page: 1370 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib214 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.08.022 – volume: 174 start-page: 5593 year: 1992 ident: 10.1016/j.cell.2016.10.044_bib10 article-title: Efficiency of homologous intermolecular recombination at different locations on the Bacillus subtilis chromosome publication-title: J. Bacteriol. doi: 10.1128/jb.174.17.5593-5596.1992 – volume: 31 start-page: 833 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib118 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib28 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 36 start-page: 184 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib27 article-title: Gene delivery by lentivirus vectors publication-title: Mol. Biotechnol. doi: 10.1007/s12033-007-0010-8 – volume: 39 start-page: 9275 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib170 article-title: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr606 – volume: 29 start-page: 149 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib227 article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1775 – volume: 7 start-page: 10548 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib180 article-title: RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency publication-title: Nat. Commun. doi: 10.1038/ncomms10548 – volume: 351 start-page: 407 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib185 article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells publication-title: Science doi: 10.1126/science.aad5177 – volume: 10 start-page: 1842 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib108 article-title: Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.117 – volume: 11 start-page: 429 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib54 article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity publication-title: Nat. Methods doi: 10.1038/nmeth.2845 – volume: 5 start-page: 258 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib161 article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template publication-title: Protein Cell doi: 10.1007/s13238-014-0032-5 – volume: 348 start-page: 442 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib44 article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science doi: 10.1126/science.aaa5945 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib157 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 156 start-page: 836 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib135 article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos publication-title: Cell doi: 10.1016/j.cell.2014.01.027 – volume: 12 start-page: 326 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib18 article-title: Highly efficient Cas9-mediated transcriptional programming publication-title: Nat. Methods doi: 10.1038/nmeth.3312 – volume: 32 start-page: 551 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib219 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2884 – volume: 348 start-page: 36 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib4 article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification publication-title: Science doi: 10.1126/science.aab1028 – volume: 23 start-page: 570 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib178 article-title: Efficient and allele-specific genome editing of disease loci in human iPSCs publication-title: Mol. Ther. doi: 10.1038/mt.2014.226 – volume: 112 start-page: 2984 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib206 article-title: Rational design of a split-Cas9 enzyme complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1501698112 – volume: 468 start-page: 67 year: 2010 ident: 10.1016/j.cell.2016.10.044_bib46 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature doi: 10.1038/nature09523 – volume: 15 start-page: 27 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib197 article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.020 – volume: 4 start-page: 5405 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib228 article-title: Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells publication-title: Sci. Rep. doi: 10.1038/srep05405 – volume: 39 start-page: 381 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib56 article-title: Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq787 – volume: 112 start-page: 10437 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib171 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1512503112 – volume: 9 start-page: 579 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib1 article-title: Optimized production and concentration of lentiviral vectors containing large inserts publication-title: J. Gene Med. doi: 10.1002/jgm.1052 – volume: 151 start-page: 1474 year: 2012 ident: 10.1016/j.cell.2016.10.044_bib181 article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression publication-title: Cell doi: 10.1016/j.cell.2012.11.054 – volume: 12 start-page: 224 year: 1996 ident: 10.1016/j.cell.2016.10.044_bib74 article-title: Genetic manipulation of genomes with rare-cutting endonucleases publication-title: Trends Genet. doi: 10.1016/0168-9525(96)10019-6 – volume: 38 start-page: 185 year: 1998 ident: 10.1016/j.cell.2016.10.044_bib75 article-title: DNA breakage and repair publication-title: Adv. Genet. doi: 10.1016/S0065-2660(08)60144-3 – volume: 55 start-page: 12440 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib73 article-title: Development of light-activated CRISPR using guide RNAs with photocleavable protectors publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201606123 – volume: 351 start-page: 84 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib176 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science doi: 10.1126/science.aad5227 – volume: 5 start-page: 15577 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib67 article-title: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection publication-title: Sci. Rep. doi: 10.1038/srep15577 – volume: 9 start-page: e109213 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib15 article-title: Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage publication-title: PLoS ONE doi: 10.1371/journal.pone.0109213 – volume: 34 start-page: 863 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib86 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3609 – volume: 3 start-page: e04766 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib106 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife doi: 10.7554/eLife.04766 – volume: 342 start-page: 31 year: 2004 ident: 10.1016/j.cell.2016.10.044_bib183 article-title: Isolation and characterization of new homing endonuclease specificities at individual target site positions publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.07.031 – volume: 6 start-page: 55 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib204 article-title: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment publication-title: Mol. Autism doi: 10.1186/s13229-015-0048-6 – volume: 16 start-page: 299 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib174 article-title: High-throughput functional genomics using CRISPR-Cas9 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3899 – volume: 115 start-page: 488 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib34 article-title: Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.304351 – volume: 34 start-page: 78 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib59 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3439 – volume: 2 start-page: 16009 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib212 article-title: A CRISPR-based approach for targeted DNA demethylation publication-title: Cell Discov. doi: 10.1038/celldisc.2016.9 – volume: 31 start-page: 684 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib99 article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2652 – volume: 11 start-page: 198 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib150 article-title: A light-inducible CRISPR-Cas9 system for control of endogenous gene activation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1753 – volume: 15 start-page: 541 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib218 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3763 – volume: 282 start-page: 4289 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib196 article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing publication-title: FEBS J. doi: 10.1111/febs.13416 – volume: 471 start-page: 602 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib31 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 – volume: 8 start-page: 765 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib144 article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection publication-title: Nat. Methods doi: 10.1038/nmeth.1670 – volume: 41 start-page: 9049 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib215 article-title: Optimization of scarless human stem cell genome editing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt555 – volume: 317 start-page: 230 year: 1985 ident: 10.1016/j.cell.2016.10.044_bib179 article-title: Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination publication-title: Nature doi: 10.1038/317230a0 – volume: 15 start-page: 405 year: 2004 ident: 10.1016/j.cell.2016.10.044_bib199 article-title: Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo publication-title: Hum. Gene Ther. doi: 10.1089/104303404322959551 – volume: 33 start-page: 102 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib184 article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3055 – volume: 6 start-page: 23549 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib125 article-title: Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing publication-title: Sci. Rep. doi: 10.1038/srep23549 – volume: 11 start-page: 783 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib169 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 33 start-page: 755 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib132 article-title: Photoactivatable CRISPR-Cas9 for optogenetic genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3245 – volume: 523 start-page: 481 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib88 article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities publication-title: Nature doi: 10.1038/nature14592 – volume: 22 start-page: 169 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib133 article-title: CRISPR-Cas9-based photoactivatable transcription system publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2014.12.011 – volume: 9 start-page: 1423 year: 2003 ident: 10.1016/j.cell.2016.10.044_bib2 article-title: Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein publication-title: Nat. Med. doi: 10.1038/nm953 – volume: 9 start-page: e115987 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib202 article-title: CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0115987 – volume: 343 start-page: 84 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib173 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 31 start-page: 397 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib43 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 31 start-page: 681 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib98 article-title: Heritable gene targeting in the mouse and rat using a CRISPR-Cas system publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2661 – volume: 82 start-page: 1391 year: 1985 ident: 10.1016/j.cell.2016.10.044_bib104 article-title: Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.82.5.1391 – volume: 51 start-page: 835 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib130 article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis publication-title: Genesis doi: 10.1002/dvg.22720 – volume: 34 start-page: 328 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib220 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3471 – volume: 18 start-page: 541 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib120 article-title: CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.022 – volume: 351 start-page: 400 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib113 article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy publication-title: Science doi: 10.1126/science.aad5725 – volume: 516 start-page: 428 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib166 article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing publication-title: Nature doi: 10.1038/nature13906 – volume: 33 start-page: 661 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib175 article-title: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3235 – volume: 161 start-page: 1169 year: 2002 ident: 10.1016/j.cell.2016.10.044_bib8 article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases publication-title: Genetics doi: 10.1093/genetics/161.3.1169 – volume: 29 start-page: 143 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib123 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1755 – volume: 34 start-page: 4791 year: 2006 ident: 10.1016/j.cell.2016.10.044_bib162 article-title: Homing endonuclease I-CreI derivatives with novel DNA target specificities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl645 – volume: 164 start-page: 950 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib64 article-title: Structure and engineering of francisella novicida Cas9 publication-title: Cell doi: 10.1016/j.cell.2016.01.039 – volume: 34 start-page: 1060 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib126 article-title: Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3658 – volume: 15 start-page: 12 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib177 article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.06.011 – volume: 190 start-page: 1390 year: 2008 ident: 10.1016/j.cell.2016.10.044_bib32 article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus publication-title: J. Bacteriol. doi: 10.1128/JB.01412-07 – volume: 34 start-page: 339 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib159 article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3481 – volume: 284 start-page: 133 year: 2004 ident: 10.1016/j.cell.2016.10.044_bib115 article-title: Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2003.10.010 – volume: 315 start-page: 1709 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib5 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 – volume: 14 start-page: 8096 year: 1994 ident: 10.1016/j.cell.2016.10.044_bib163 article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.14.12.8096 – volume: 1 start-page: e60 year: 2005 ident: 10.1016/j.cell.2016.10.044_bib57 article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010060 – volume: 31 start-page: 230 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib24 article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2507 – volume: 37 start-page: 5405 year: 2009 ident: 10.1016/j.cell.2016.10.044_bib53 article-title: Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp548 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib158 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 11 start-page: 316 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib30 article-title: Small molecule-triggered Cas9 protein with improved genome-editing specificity publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1793 – volume: 113 start-page: 2868 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib205 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1520244113 – volume: 5 start-page: 866 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib122 article-title: Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation publication-title: Biol. Open doi: 10.1242/bio.019067 – volume: 33 start-page: 139 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib226 article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3149 – volume: 533 start-page: 125 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib141 article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 publication-title: Nature doi: 10.1038/nature17664 – volume: 26 start-page: 443 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib52 article-title: Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.074 – volume: 33 start-page: 1293 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib87 article-title: Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3404 – volume: 12 start-page: 1893 year: 2001 ident: 10.1016/j.cell.2016.10.044_bib93 article-title: Systematic determination of the packaging limit of lentiviral vectors publication-title: Hum. Gene Ther. doi: 10.1089/104303401753153947 – volume: 163 start-page: 759 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib225 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 34 start-page: 334 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib217 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3469 – volume: 244 start-page: 1288 year: 1989 ident: 10.1016/j.cell.2016.10.044_bib13 article-title: Altering the genome by homologous recombination publication-title: Science doi: 10.1126/science.2660260 – volume: 43 start-page: 3389 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib136 article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv137 – volume: 24 start-page: 372 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib58 article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system publication-title: Cell Res. doi: 10.1038/cr.2014.11 – volume: 25 start-page: 1158 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib151 article-title: Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators publication-title: Genome Res. doi: 10.1101/gr.179044.114 – volume: 345 start-page: 1184 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib112 article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA publication-title: Science doi: 10.1126/science.1254445 – volume: 44 start-page: 419 year: 1986 ident: 10.1016/j.cell.2016.10.044_bib190 article-title: High frequency targeting of genes to specific sites in the mammalian genome publication-title: Cell doi: 10.1016/0092-8674(86)90463-0 – volume: 154 start-page: 1380 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib156 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 13 start-page: 653 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib172 article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.002 – volume: 31 start-page: 227 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib72 article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2501 – volume: 32 start-page: 677 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib94 article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2916 – volume: 343 start-page: 80 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib201 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science doi: 10.1126/science.1246981 – volume: 32 start-page: 347 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib167 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2842 – volume: 140 start-page: 4982 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib68 article-title: Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish publication-title: Development doi: 10.1242/dev.099085 – volume: 9 start-page: e113232 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib95 article-title: Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53 publication-title: PLoS ONE doi: 10.1371/journal.pone.0113232 – volume: 5 start-page: 10833 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib155 article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus publication-title: Sci. Rep. doi: 10.1038/srep10833 – volume: 31 start-page: 3676 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib107 article-title: CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv423 – volume: 351 start-page: 403 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib131 article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy publication-title: Science doi: 10.1126/science.aad5143 – volume: 16 start-page: 142 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib222 article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.003 – volume: 122 start-page: 519 year: 1989 ident: 10.1016/j.cell.2016.10.044_bib164 article-title: Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/122.3.519 – volume: 8 start-page: e68708 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib71 article-title: Heritable and precise zebrafish genome editing using a CRISPR-Cas system publication-title: PLoS ONE doi: 10.1371/journal.pone.0068708 – volume: 13 start-page: 563 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib19 article-title: Comparison of Cas9 activators in multiple species publication-title: Nat. Methods doi: 10.1038/nmeth.3871 – volume: 167 start-page: 233 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib109 article-title: Editing DNA methylation in the mammalian genome publication-title: Cell doi: 10.1016/j.cell.2016.08.056 – volume: 3 start-page: e03401 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib38 article-title: Concerning RNA-guided gene drives for the alteration of wild populations publication-title: eLife doi: 10.7554/eLife.03401 – volume: 109 start-page: E2579 year: 2012 ident: 10.1016/j.cell.2016.10.044_bib48 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208507109 – volume: 300 start-page: 764 year: 2003 ident: 10.1016/j.cell.2016.10.044_bib9 article-title: Enhancing gene targeting with designed zinc finger nucleases publication-title: Science doi: 10.1126/science.1079512 – volume: 43 start-page: 6450 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib191 article-title: Development of an intein-mediated split-Cas9 system for gene therapy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv601 – volume: 16 start-page: 159 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib82 article-title: Chromatin regulation at the frontier of synthetic biology publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3900 – volume: 3 start-page: 940 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib16 article-title: A CRISPR/Cas9-based system for reprogramming cell lineage specification publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2014.09.013 – volume: 346 start-page: 1258096 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib35 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 14 start-page: 49 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib80 article-title: TALENs: a widely applicable technology for targeted genome editing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3486 – volume: 22 start-page: 404 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib230 article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus publication-title: Gene Ther. doi: 10.1038/gt.2015.2 – volume: 10 start-page: 973 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib147 article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors publication-title: Nat. Methods doi: 10.1038/nmeth.2600 – volume: 4 start-page: 143 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib101 article-title: Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9 publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2014.10.013 – volume: 153 start-page: 910 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib200 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.04.025 – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib119 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 110 start-page: 15644 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib66 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313587110 – volume: 12 start-page: 595 year: 1993 ident: 10.1016/j.cell.2016.10.044_bib146 article-title: The RNA binding site of bacteriophage MS2 coat protein publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb05691.x – volume: 15 start-page: 1463 year: 2008 ident: 10.1016/j.cell.2016.10.044_bib14 article-title: Progress and prospects: zinc-finger nucleases as gene therapy agents publication-title: Gene Ther. doi: 10.1038/gt.2008.145 – volume: 34 start-page: 646 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib137 article-title: Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3528 – volume: 47 start-page: 469 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib103 article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells publication-title: Nat. Genet. doi: 10.1038/ng.3258 – volume: 4 start-page: 220 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib7 article-title: Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.020 – volume: 31 start-page: 822 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib41 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 – volume: 514 start-page: 380 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib213 article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver publication-title: Nature doi: 10.1038/nature13589 – volume: 5 start-page: 5507 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib216 article-title: Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells publication-title: Nat. Commun. doi: 10.1038/ncomms6507 – volume: 509 start-page: 487 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib231 article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells publication-title: Nature doi: 10.1038/nature13166 – volume: 588 start-page: 3954 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib23 article-title: Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.09.008 – volume: 546 start-page: 119 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib12 article-title: Genome editing in human stem cells publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-801185-0.00006-4 – volume: 351 start-page: 867 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib77 article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage publication-title: Science doi: 10.1126/science.aad8282 – volume: 159 start-page: 647 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib50 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell doi: 10.1016/j.cell.2014.09.029 – volume: 15 start-page: 215 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib51 article-title: An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.05.018 – volume: 23 start-page: 465 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib17 article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos publication-title: Cell Res. doi: 10.1038/cr.2013.45 – volume: 3 start-page: e186 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib105 article-title: The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2014.38 – volume: 112 start-page: E6736 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib45 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1521077112 – volume: 159 start-page: 635 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib187 article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell doi: 10.1016/j.cell.2014.09.039 – volume: 6 start-page: 6244 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib139 article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy publication-title: Nat. Commun. doi: 10.1038/ncomms7244 – volume: 32 start-page: 941 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib60 article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2951 – volume: 353 start-page: aaf8729 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib134 article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems publication-title: Science doi: 10.1126/science.aaf8729 – volume: 24 start-page: 1020 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib154 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. doi: 10.1101/gr.171264.113 – volume: 60 start-page: 242 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib229 article-title: DNase H Activity of Neisseria meningitidis Cas9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.020 – volume: 96 start-page: 2381 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib100 article-title: Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9 publication-title: J. Gen. Virol. doi: 10.1099/vir.0.000139 – volume: 17 start-page: 233 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib21 article-title: Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.06.001 – volume: 10 start-page: 1116 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib37 article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing publication-title: Nat. Methods doi: 10.1038/nmeth.2681 – volume: 18 start-page: 573 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib65 article-title: Induced pluripotent stem cells meet genome editing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.013 – volume: 13 start-page: 127 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib189 article-title: Editing the epigenome: technologies for programmable transcription and epigenetic modulation publication-title: Nat. Methods doi: 10.1038/nmeth.3733 – volume: 12 start-page: 401 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib81 article-title: Functional annotation of native enhancers with a Cas9-histone demethylase fusion publication-title: Nat. Methods doi: 10.1038/nmeth.3325 – volume: 15 start-page: 2063 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib182 article-title: Hydrodynamic gene delivery: its principles and applications publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300314 – volume: 160 start-page: 339 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib223 article-title: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds publication-title: Cell doi: 10.1016/j.cell.2014.11.052 – volume: 24 start-page: 1012 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib84 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. doi: 10.1101/gr.171322.113 – volume: 18 start-page: 80 year: 2010 ident: 10.1016/j.cell.2016.10.044_bib207 article-title: Effect of genome size on AAV vector packaging publication-title: Mol. Ther. doi: 10.1038/mt.2009.255 – volume: 33 start-page: 390 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib36 article-title: Inducible in vivo genome editing with CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3155 – volume: 2 start-page: e00471 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib79 article-title: RNA-programmed genome editing in human cells publication-title: eLife doi: 10.7554/eLife.00471 – volume: 318 start-page: 1917 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib221 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science doi: 10.1126/science.1151526 – volume: 26 start-page: 114 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib138 article-title: Fanconi anemia gene editing by the CRISPR/Cas9 system publication-title: Hum. Gene Ther. doi: 10.1089/hum.2014.111 – volume: 326 start-page: 1509 year: 2009 ident: 10.1016/j.cell.2016.10.044_bib11 article-title: Breaking the code of DNA binding specificity of TAL-type III effectors publication-title: Science doi: 10.1126/science.1178811 – volume: 159 start-page: 440 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib149 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell doi: 10.1016/j.cell.2014.09.014 – volume: 44 start-page: 113 year: 2010 ident: 10.1016/j.cell.2016.10.044_bib62 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-051710-150955 – volume: 33 start-page: 187 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib194 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3117 – volume: 31 start-page: 827 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib69 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2647 – volume: 39 start-page: 359 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib96 article-title: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq704 – volume: 26 start-page: 432 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib203 article-title: Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.087 – volume: 10 start-page: 977 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib117 article-title: CRISPR RNA-guided activation of endogenous human genes publication-title: Nat. Methods doi: 10.1038/nmeth.2598 – volume: 4 start-page: 773 year: 2004 ident: 10.1016/j.cell.2016.10.044_bib124 article-title: What is regenerative medicine? Emergence of applied stem cell and developmental biology publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.4.6.773 – volume: 513 start-page: 120 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib233 article-title: Saturation editing of genomic regions by multiplex homology-directed repair publication-title: Nature doi: 10.1038/nature13695 – volume: 195 start-page: 331 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib110 article-title: Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions publication-title: Genetics doi: 10.1534/genetics.113.155382 – volume: 11 start-page: 636 year: 2010 ident: 10.1016/j.cell.2016.10.044_bib195 article-title: Genome editing with engineered zinc finger nucleases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2842 – volume: 7 start-page: 93 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib160 article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing publication-title: Genome Med. doi: 10.1186/s13073-015-0215-6 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.cell.2016.10.044_bib78 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 152 start-page: 1173 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib153 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 44 start-page: 5615 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib198 article-title: Repurposing the CRISPR-Cas9 system for targeted DNA methylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw159 – volume: 12 start-page: 237 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib85 article-title: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells publication-title: Nat. Methods doi: 10.1038/nmeth.3284 – volume: 39 start-page: 6315 year: 2011 ident: 10.1016/j.cell.2016.10.044_bib97 article-title: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr188 – volume: 137 start-page: 5642 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib61 article-title: Optical Control of CRISPR/Cas9 Gene Editing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512664v – volume: 12 start-page: 1143 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib188 article-title: Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements publication-title: Nat. Methods doi: 10.1038/nmeth.3630 – volume: 32 start-page: 569 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib193 article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2908 – volume: 160 start-page: 1246 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib20 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell doi: 10.1016/j.cell.2015.02.038 – year: 2016 ident: 10.1016/j.cell.2016.10.044_bib168 article-title: Genome-scale CRISPR pooled screens publication-title: Anal. Biochem. – volume: 31 start-page: 839 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib145 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2673 – volume: 25 start-page: 1298 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib111 article-title: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt1353 – volume: 33 start-page: 538 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib121 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3190 – volume: 18 start-page: 33 year: 2000 ident: 10.1016/j.cell.2016.10.044_bib114 article-title: Synthetic DNA delivery systems publication-title: Nat. Biotechnol. doi: 10.1038/71889 – volume: 24 start-page: 636 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib129 article-title: Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome publication-title: Mol. Ther. doi: 10.1038/mt.2015.218 – volume: 516 start-page: 423 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib116 article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system publication-title: Nature doi: 10.1038/nature13902 – volume: 2 start-page: 1692 year: 2007 ident: 10.1016/j.cell.2016.10.044_bib224 article-title: High-efficiency transfection of mammalian neurons via nucleofection publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.226 – volume: 32 start-page: 279 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib42 article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2808 – volume: 532 start-page: 517 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib39 article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA publication-title: Nature doi: 10.1038/nature17945 – volume: 32 start-page: 3683 year: 2004 ident: 10.1016/j.cell.2016.10.044_bib165 article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh703 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.cell.2016.10.044_bib186 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 43 start-page: 9379 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib148 article-title: Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv993 – volume: 23 start-page: 1163 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib22 article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system publication-title: Cell Res. doi: 10.1038/cr.2013.122 – volume: 24 start-page: 1526 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib211 article-title: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac publication-title: Genome Res. doi: 10.1101/gr.173427.114 – volume: 154 start-page: 442 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib49 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 17 start-page: 300 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib192 article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.28 – volume: 33 start-page: 543 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib26 article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3198 – volume: 33 start-page: 73 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib232 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3081 – volume: 32 start-page: 577 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib55 article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2909 – volume: 7 start-page: 53 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib128 article-title: Precision cancer mouse models through genome editing with CRISPR-Cas9 publication-title: Genome Med. doi: 10.1186/s13073-015-0178-7 – volume: 517 start-page: 583 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib92 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature doi: 10.1038/nature14136 – volume: 13 start-page: 659 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib208 article-title: Correction of a genetic disease in mouse via use of CRISPR-Cas9 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.10.016 – volume: 281 start-page: 1161 year: 1998 ident: 10.1016/j.cell.2016.10.044_bib6 article-title: Sustained delivery of proteins for novel therapeutic agents publication-title: Science doi: 10.1126/science.281.5380.1161 – volume: 157 start-page: 1262 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib70 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 208 start-page: 44 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib102 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.04.024 – volume: 12 start-page: 393 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib33 article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.006 – volume: 16 start-page: 257 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib40 article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications publication-title: Genome Biol. doi: 10.1186/s13059-015-0817-8 – volume: 34 start-page: 869 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib90 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3620 – volume: 533 start-page: 420 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib91 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 17 start-page: 213 year: 2015 ident: 10.1016/j.cell.2016.10.044_bib142 article-title: Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.001 – volume: 21 start-page: 562 year: 2013 ident: 10.1016/j.cell.2016.10.044_bib47 article-title: RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.09.001 – volume: 529 start-page: 490 year: 2016 ident: 10.1016/j.cell.2016.10.044_bib89 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature doi: 10.1038/nature16526 – volume: 326 start-page: 1501 year: 2009 ident: 10.1016/j.cell.2016.10.044_bib127 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science doi: 10.1126/science.1178817 – volume: 32 start-page: 670 year: 2014 ident: 10.1016/j.cell.2016.10.044_bib209 article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2889 – reference: 28431253 - Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005. |
SSID | ssj0008555 |
Score | 2.673462 |
SecondaryResourceType | review_article |
Snippet | The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Animals biotechnology Cells, Cultured CRISPR-Cas Systems Disease - genetics Disease Models, Animal DNA Epigenomics - methods Gene Editing - methods Genetic Therapy genome Humans mammals therapeutics |
Title | CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes |
URI | https://dx.doi.org/10.1016/j.cell.2016.10.044 https://www.ncbi.nlm.nih.gov/pubmed/27866654 https://www.proquest.com/docview/1842545640 https://www.proquest.com/docview/2000433414 https://pubmed.ncbi.nlm.nih.gov/PMC5235943 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqSkhcEDtlk5G4odAmsePkSEtLQQKhQqXeIid2RFiSqsuhf89MNlFQe-CSgz22nLE9fmPPQsilpaJIiVAAclMtg1kS9pyCD6pAnlBcBCozkH1y-kP2MOKjGumUvjBoVlnI_lymZ9K6KGkW3GyO4xh9fD3LdTJEAdudoxOfzdzMiW_UrqSxy3mexcCDUQB14TiT23jh5TiadznXaOHF2KrD6S_4_G1D-eNQ6m2TrQJN0pt8wDukppNdspHnl1zskdvO4P7leWC04ahStLpFB-WYAlalgP3oo0ziMoUXTSPanX_IySKF_uidTtIvPd0nw173tdM3irQJRgjYYGZIHTGppMkD2KueBIAXCTvyvAigAbcCrVlkhQADuQbVD6YkVKAFui6TMvQUaDP2AaknaaKPCNUB4DembOUoxTQPpSkdxxWB7QbC5rZoELPklx8WMcUxtcWnXxqPvfvIYx95jGXA4wa5qtqM84gaa6l5OQ3-0rrwQeSvbXdRzpkPGwarZaLT-dQ38eERg-i0VtNY2QspHPDQz2E-z9VYLeE6mLK5QcTSCqgIMGD3ck0Sv2WBu0Hp5x6zj__5Tydk00JQ0TINk52S-mwy12cAiWbBebbmvwEH7gj6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RahcKp5lWx5GghMK3Th2HB840Be79CFUWmlvrhM7YoEmVXdXaH8Xf5CZvMSC2gNSLzk4tmXP2DPf2OMZgNfc5blTmULk5vqB4Bb3nMMPmUBaOalSVznIHseDM_FpJEdL8Kt9C0NulY3sr2V6Ja2bkq2GmluX4zG98dU8iStEgdtd6saz8sDPf6LdNnk_3EUmv-F8f-90ZxA0qQWCDPXnNLA-F9bZUKa4nrVFEJSrKNc6R_Upeeq9yHmGUEl6NI9w2JlDSylJhLWZdoj4I-x3Ge4g-lAkDYaj7U78J1LWaRM0ThuH17zUqZ3K6DSe_Mnid-RSJsR12vBftPu30-YfWnD_Pqw18JV9qCn0AJZ88RDu1gkt549gd-dk-OXzSbCNutGx7tgerXGG4Jgh2GRHthi3OcNYmbO92Xd7NS-xP_bRF-WFnzyGs1sh5hNYKcrCPwXmUwSMwkUudk54mdnQxnGi0ihJVSQj1YOwpZfJmiDmlEvjh2m91b4ZorEhGlMZ0rgHb7s2l3UIjxtry5YNZmEhGtQxN7Z71fLM4A6l37bw5WxiQrrppKg9_evr8OpKFhEF9rNe87kbK1dJTDmie6AWVkBXgSKEL_4pxl-rSOGSR1KLaOM_5_QSVgenR4fmcHh8sAn3OCGafhiE_BmsTK9m_jnisWn6olr_DM5ve8P9BvaGRa4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Based+Technologies+for+the+Manipulation+of+Eukaryotic+Genomes&rft.jtitle=Cell&rft.au=Komor%2C+Alexis+C.&rft.au=Badran%2C+Ahmed+H.&rft.au=Liu%2C+David+R.&rft.date=2017-01-12&rft.issn=0092-8674&rft.volume=168&rft.issue=1-2&rft.spage=20&rft.epage=36&rft_id=info:doi/10.1016%2Fj.cell.2016.10.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2016_10_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |