CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes

The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various application...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 168; no. 1-2; pp. 20 - 36
Main Authors Komor, Alexis C., Badran, Ahmed H., Liu, David R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated. CRISPR-based genome-editing technologies provide powerful tools to study basic biology and may lead to new treatments for human disease.
AbstractList The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this review we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and some of the remarkable advancements in basic research, biotechnology, and therapeutics development that these developments have facilitated.
The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated. CRISPR-based genome-editing technologies provide powerful tools to study basic biology and may lead to new treatments for human disease.
Author Badran, Ahmed H.
Liu, David R.
Komor, Alexis C.
AuthorAffiliation 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
3 Broad Institute of MIT and Harvard, Cambridge, MA, 02141
2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
AuthorAffiliation_xml – name: 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
– name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
– name: 3 Broad Institute of MIT and Harvard, Cambridge, MA, 02141
Author_xml – sequence: 1
  givenname: Alexis C.
  surname: Komor
  fullname: Komor, Alexis C.
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: Ahmed H.
  surname: Badran
  fullname: Badran, Ahmed H.
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 3
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  email: drliu@fas.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27866654$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1PHCEYhUmjqav2D_SimcvezAosDENimtT1M7Gp8eOasMyLyzoLK8yY-O9lXDXVC3sFeXnOyeE922jDBw8IfSd4TDCp9hZjA207pvmeB2PM2Bc0IliKkhFBN9AIY0nLuhJsC22ntMAY15zzr2iLirqqKs5G6HB6eXZ1cVke6ARNcQ1m7kMbbh2kwoZYdHMo_mjvVn2rOxd8EWxx1N_p-Bg6Z4oT8GEJaRdtWt0m-PZy7qCb46Pr6Wl5_vfkbPr7vDScs67UYJluNOEzSrnUUggrJlZKiyXhdAbALDUcCw4EC0yFaQQldc20NrLJeSc76Nfad9XPltAY8F3UrVpFt8yJVNBOvX_xbq5uw4PidMIlm2SDny8GMdz3kDq1dGlYovYQ-qRoXlHGGGH_RUnNKGe8YjijP_6N9ZbndcsZoGvAxJBSBPuGEKyGKtVCDdZqqHKY5SqzqP4gMq57LiF_zbWfS_fXUshlPDiIKhkH3kDjIphONcF9Jn8Cs_a46Q
CitedBy_id crossref_primary_10_1016_j_semcdb_2019_05_007
crossref_primary_10_2139_ssrn_4016299
crossref_primary_10_2183_pjab_96_002
crossref_primary_10_1016_j_heares_2020_107958
crossref_primary_10_1042_BCJ20170025
crossref_primary_10_1016_j_jid_2019_07_701
crossref_primary_10_1007_s00774_020_01161_7
crossref_primary_10_1021_acs_biochem_7b00687
crossref_primary_10_1016_j_algal_2023_103068
crossref_primary_10_1038_s41467_022_30228_4
crossref_primary_10_1093_hmg_ddy120
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1016_j_jbc_2021_100394
crossref_primary_10_1038_s41684_022_01076_y
crossref_primary_10_3389_fcell_2021_719705
crossref_primary_10_1073_pnas_2314698120
crossref_primary_10_1101_cshperspect_a035667
crossref_primary_10_1016_j_colsurfb_2025_114573
crossref_primary_10_1007_s12257_022_0191_9
crossref_primary_10_1016_j_tibs_2020_06_003
crossref_primary_10_1002_1873_3468_14989
crossref_primary_10_1016_j_gene_2017_06_019
crossref_primary_10_3390_brainsci7050053
crossref_primary_10_1016_j_phrs_2023_106783
crossref_primary_10_1007_s11103_022_01321_5
crossref_primary_10_1016_j_tibtech_2021_09_007
crossref_primary_10_1038_s41467_019_10747_3
crossref_primary_10_1093_nar_gkac712
crossref_primary_10_1126_science_aat4982
crossref_primary_10_1186_s40246_023_00507_2
crossref_primary_10_2174_1566523221666210303100805
crossref_primary_10_1002_smtd_201800473
crossref_primary_10_1038_s41586_019_1076_8
crossref_primary_10_1186_s41038_017_0103_y
crossref_primary_10_1038_s41467_020_16117_8
crossref_primary_10_1002_cptc_202100110
crossref_primary_10_1002_jgm_2963
crossref_primary_10_1089_crispr_2019_0001
crossref_primary_10_1038_nature25164
crossref_primary_10_1007_s00018_024_05263_7
crossref_primary_10_1111_pbi_13444
crossref_primary_10_3389_fgene_2021_809832
crossref_primary_10_1073_pnas_2020401118
crossref_primary_10_3390_plants8050130
crossref_primary_10_1016_j_ggedit_2021_100005
crossref_primary_10_3390_gels8120770
crossref_primary_10_1016_j_engmic_2023_100115
crossref_primary_10_3390_diseases7030047
crossref_primary_10_3389_fimmu_2024_1462697
crossref_primary_10_1016_j_molcel_2017_08_008
crossref_primary_10_1021_acssynbio_3c00099
crossref_primary_10_1016_j_celrep_2019_07_089
crossref_primary_10_1002_smtd_202301326
crossref_primary_10_1038_s41467_021_26789_5
crossref_primary_10_1007_s00253_021_11688_y
crossref_primary_10_3389_fonc_2024_1368732
crossref_primary_10_1007_s40291_019_00391_4
crossref_primary_10_1038_s12276_023_01057_2
crossref_primary_10_1111_pbi_14307
crossref_primary_10_1007_s10529_018_02639_1
crossref_primary_10_3390_biologics3040014
crossref_primary_10_3389_fgene_2019_00131
crossref_primary_10_1016_j_ijpara_2019_04_003
crossref_primary_10_1016_j_molp_2019_06_009
crossref_primary_10_18632_oncotarget_25451
crossref_primary_10_1021_jacs_1c09041
crossref_primary_10_3390_cells11142186
crossref_primary_10_1038_s41598_020_66596_4
crossref_primary_10_1007_s11248_024_00404_x
crossref_primary_10_1007_s13238_017_0458_7
crossref_primary_10_1038_s41596_020_00423_y
crossref_primary_10_2903_j_efsa_2020_6299
crossref_primary_10_1210_endrev_bnaa013
crossref_primary_10_3389_fnins_2023_1223747
crossref_primary_10_3103_S0095452722020037
crossref_primary_10_15302_J_FASE_2020322
crossref_primary_10_1002_sctm_18_0039
crossref_primary_10_1093_nar_gkaa208
crossref_primary_10_1007_s00335_017_9727_2
crossref_primary_10_1093_nar_gkac987
crossref_primary_10_1038_s41467_019_11514_0
crossref_primary_10_1038_s41598_022_07746_8
crossref_primary_10_1093_nsr_nwz013
crossref_primary_10_1186_s13619_020_00059_z
crossref_primary_10_3390_cells14020131
crossref_primary_10_3390_biology6040042
crossref_primary_10_1021_acschembio_7b00710
crossref_primary_10_1016_j_addr_2020_05_001
crossref_primary_10_3390_biom13081208
crossref_primary_10_1371_journal_pone_0178768
crossref_primary_10_1016_j_omtm_2022_03_006
crossref_primary_10_3390_biomedicines11123347
crossref_primary_10_1016_j_tibtech_2019_03_008
crossref_primary_10_1007_s13562_020_00606_4
crossref_primary_10_1002_1873_3468_12599
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_1080_03036758_2020_1726415
crossref_primary_10_1016_j_jbiotec_2017_04_017
crossref_primary_10_1016_j_omtm_2020_05_024
crossref_primary_10_1039_D1BM00790D
crossref_primary_10_1016_j_humgen_2024_201297
crossref_primary_10_1038_s41586_018_0500_9
crossref_primary_10_1016_j_celrep_2020_107723
crossref_primary_10_1093_nar_gkz267
crossref_primary_10_1111_tpj_14679
crossref_primary_10_1038_s41594_018_0054_4
crossref_primary_10_3389_fbioe_2025_1548227
crossref_primary_10_1039_D0PY01777A
crossref_primary_10_1016_j_fgb_2024_103944
crossref_primary_10_1038_s41551_019_0354_y
crossref_primary_10_1007_s12033_022_00479_z
crossref_primary_10_1038_ncomms15790
crossref_primary_10_1063_5_0157193
crossref_primary_10_23876_j_krcp_2018_37_3_197
crossref_primary_10_1016_j_biortech_2021_126200
crossref_primary_10_1016_j_dmpk_2020_01_009
crossref_primary_10_1039_C8OB02764A
crossref_primary_10_1128_AEM_00827_18
crossref_primary_10_1007_s11033_024_10101_x
crossref_primary_10_1021_acsnano_3c04739
crossref_primary_10_1007_s11427_017_9170_3
crossref_primary_10_1021_acschembio_7b00855
crossref_primary_10_1186_s12943_022_01518_8
crossref_primary_10_1371_journal_pbio_3001481
crossref_primary_10_1002_smll_202002400
crossref_primary_10_1038_s41588_020_0578_5
crossref_primary_10_1155_2017_5762301
crossref_primary_10_1038_s41576_018_0053_7
crossref_primary_10_1073_pnas_1803440115
crossref_primary_10_2147_IDR_S370869
crossref_primary_10_1021_acschembio_9b01005
crossref_primary_10_1186_s43141_021_00185_4
crossref_primary_10_1093_bioinformatics_btz867
crossref_primary_10_3390_molecules28031498
crossref_primary_10_1016_j_ymthe_2020_11_013
crossref_primary_10_3390_biom9100584
crossref_primary_10_1111_1751_7915_13382
crossref_primary_10_1039_D1CC01260F
crossref_primary_10_1002_cpz1_65
crossref_primary_10_1371_journal_pbio_3000496
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1016_j_animal_2023_100764
crossref_primary_10_1038_s41589_020_0490_4
crossref_primary_10_3103_S0891416823030084
crossref_primary_10_1126_science_aan4672
crossref_primary_10_1038_s41587_020_0414_6
crossref_primary_10_1021_acs_bioconjchem_7b00057
crossref_primary_10_2174_0929867328666211129122908
crossref_primary_10_1158_1535_7163_MCT_18_0124
crossref_primary_10_1080_21645698_2024_2411767
crossref_primary_10_1016_j_colsurfb_2021_111901
crossref_primary_10_3390_cells12141818
crossref_primary_10_4103_ijo_IJO_3117_20
crossref_primary_10_1021_jacs_3c12702
crossref_primary_10_1093_nar_gkae604
crossref_primary_10_1007_s00335_017_9688_5
crossref_primary_10_1016_j_celrep_2019_10_078
crossref_primary_10_1038_s41422_018_0131_6
crossref_primary_10_1038_nbt_3913
crossref_primary_10_3390_ijms22073741
crossref_primary_10_1021_acssynbio_1c00297
crossref_primary_10_1016_j_drudis_2023_103652
crossref_primary_10_1038_s41581_019_0135_6
crossref_primary_10_1152_physiol_00005_2019
crossref_primary_10_1007_s10142_024_01473_1
crossref_primary_10_1007_s12033_022_00639_1
crossref_primary_10_1038_s41587_020_0561_9
crossref_primary_10_1080_17460441_2021_1850687
crossref_primary_10_1016_j_preteyeres_2021_100975
crossref_primary_10_1016_j_jgg_2024_10_014
crossref_primary_10_1038_s41467_019_09983_4
crossref_primary_10_1038_s41598_019_40181_w
crossref_primary_10_3390_biology11040561
crossref_primary_10_1007_s12033_021_00345_4
crossref_primary_10_1016_j_ejphar_2025_177511
crossref_primary_10_3892_ijmm_2023_5302
crossref_primary_10_1016_j_ymthe_2019_02_012
crossref_primary_10_1016_j_coisb_2017_05_008
crossref_primary_10_1126_sciadv_aao4774
crossref_primary_10_2174_1568009618666180905100608
crossref_primary_10_1074_jbc_REV120_013433
crossref_primary_10_1186_s12862_017_0942_y
crossref_primary_10_1128_mBio_02169_19
crossref_primary_10_1242_dev_195586
crossref_primary_10_1002_cjoc_202300452
crossref_primary_10_1038_ncomms15464
crossref_primary_10_1093_nar_gkac565
crossref_primary_10_1074_jbc_REV120_014405
crossref_primary_10_1038_d41586_019_01086_w
crossref_primary_10_1038_s41594_018_0148_z
crossref_primary_10_1002_cpcb_57
crossref_primary_10_1007_s00432_023_04747_6
crossref_primary_10_1016_j_gendis_2023_03_017
crossref_primary_10_1007_s11814_022_1076_5
crossref_primary_10_1016_j_csbj_2019_06_007
crossref_primary_10_3390_ijms21249546
crossref_primary_10_3390_vaccines12060636
crossref_primary_10_1038_nrc_2017_58
crossref_primary_10_1097_MPG_0000000000001948
crossref_primary_10_3390_pharmaceutics13101722
crossref_primary_10_1016_j_gene_2021_145919
crossref_primary_10_1093_femspd_ftx036
crossref_primary_10_1016_j_molcel_2021_12_032
crossref_primary_10_1002_ange_201900788
crossref_primary_10_1038_s41576_018_0059_1
crossref_primary_10_1016_j_chembiol_2020_02_004
crossref_primary_10_1111_jipb_13158
crossref_primary_10_1002_bit_27882
crossref_primary_10_1093_bfgp_elaa002
crossref_primary_10_1007_s00284_017_1406_8
crossref_primary_10_1016_j_molp_2018_02_005
crossref_primary_10_1016_j_ymthe_2018_08_021
crossref_primary_10_1016_j_crbiot_2019_08_003
crossref_primary_10_1007_s12033_022_00507_y
crossref_primary_10_1093_bioinformatics_btab112
crossref_primary_10_3389_fgene_2024_1375481
crossref_primary_10_1002_adbi_201900253
crossref_primary_10_1002_bies_201700161
crossref_primary_10_1021_acsnano_2c10379
crossref_primary_10_1089_crispr_2022_0077
crossref_primary_10_1093_nsr_nwae135
crossref_primary_10_1016_j_ymeth_2022_03_006
crossref_primary_10_2174_0929867331666230727104911
crossref_primary_10_1038_s41579_019_0299_x
crossref_primary_10_1016_j_eng_2024_10_019
crossref_primary_10_1002_mco2_155
crossref_primary_10_1016_j_cell_2018_01_012
crossref_primary_10_1039_D1OB01888D
crossref_primary_10_3390_ijms20153689
crossref_primary_10_3389_fgene_2019_00365
crossref_primary_10_1038_nature26155
crossref_primary_10_1097_HCO_0000000000000394
crossref_primary_10_1093_nar_gky1165
crossref_primary_10_1016_j_trsl_2021_08_006
crossref_primary_10_1002_bit_26727
crossref_primary_10_1016_j_scib_2018_07_002
crossref_primary_10_1631_jzus_B2100710
crossref_primary_10_1080_2162402X_2019_1577127
crossref_primary_10_1021_acschembio_2c00836
crossref_primary_10_1111_dgd_12620
crossref_primary_10_3390_ijms20092056
crossref_primary_10_18699_VJ20_643
crossref_primary_10_3390_ijms222413301
crossref_primary_10_3389_fendo_2020_576632
crossref_primary_10_1016_j_crmeth_2024_100912
crossref_primary_10_3390_molecules27082434
crossref_primary_10_1126_sciadv_aba1773
crossref_primary_10_3390_ijms24108657
crossref_primary_10_1016_j_ymthe_2018_08_007
crossref_primary_10_2217_epi_2020_0110
crossref_primary_10_1016_j_drudis_2021_11_018
crossref_primary_10_1016_j_jbc_2022_102525
crossref_primary_10_1038_s41467_018_07988_z
crossref_primary_10_3390_v10120732
crossref_primary_10_1038_nrd_2018_91
crossref_primary_10_1039_C9OB01686D
crossref_primary_10_1093_g3journal_jkab169
crossref_primary_10_1111_cpr_13096
crossref_primary_10_1007_s11248_022_00313_x
crossref_primary_10_1002_smtd_201900506
crossref_primary_10_1016_j_scienta_2019_04_042
crossref_primary_10_1016_j_biotechadv_2019_107447
crossref_primary_10_1016_j_jddst_2024_105384
crossref_primary_10_1186_s12934_019_1194_x
crossref_primary_10_1016_j_ajhg_2017_06_012
crossref_primary_10_3168_jds_2020_19901
crossref_primary_10_3389_fgene_2019_00347
crossref_primary_10_3389_fphys_2018_00953
crossref_primary_10_1016_j_omtm_2019_02_008
crossref_primary_10_1016_j_cell_2019_04_009
crossref_primary_10_1016_j_molp_2019_03_009
crossref_primary_10_1073_pnas_1818461116
crossref_primary_10_1039_D2SM00204C
crossref_primary_10_1155_2017_2601746
crossref_primary_10_1002_anie_201914575
crossref_primary_10_1002_rmv_2009
crossref_primary_10_1016_j_snb_2024_136472
crossref_primary_10_1002_jbmr_3351
crossref_primary_10_1093_nar_gkaa272
crossref_primary_10_1158_1541_7786_MCR_19_1208
crossref_primary_10_3390_microorganisms11102404
crossref_primary_10_1080_14779072_2024_2328642
crossref_primary_10_1038_s41598_018_25654_8
crossref_primary_10_1038_s41598_018_36739_9
crossref_primary_10_1186_s12896_019_0509_7
crossref_primary_10_1016_j_ddtec_2018_01_001
crossref_primary_10_1089_crispr_2019_0018
crossref_primary_10_1038_s41589_020_00721_2
crossref_primary_10_3390_ijms20174294
crossref_primary_10_1016_j_semcdb_2018_07_009
crossref_primary_10_1038_s41573_020_0084_6
crossref_primary_10_15302_J_FASE_2019305
crossref_primary_10_1016_j_pharmthera_2018_11_011
crossref_primary_10_1039_C8SC03426E
crossref_primary_10_1016_j_dci_2017_02_025
crossref_primary_10_1007_s13238_017_0418_2
crossref_primary_10_1007_s13402_024_00954_6
crossref_primary_10_1021_acssynbio_1c00067
crossref_primary_10_1016_j_cbpa_2021_03_004
crossref_primary_10_1186_s13059_018_1445_x
crossref_primary_10_18632_oncotarget_21607
crossref_primary_10_1038_s41587_020_0592_2
crossref_primary_10_1007_s00216_021_03173_2
crossref_primary_10_1016_j_celrep_2024_113878
crossref_primary_10_4014_jmb_2006_06036
crossref_primary_10_1093_nar_gkx715
crossref_primary_10_1093_nar_gkz1165
crossref_primary_10_1021_acsnano_4c02987
crossref_primary_10_1016_j_stem_2017_09_006
crossref_primary_10_1126_science_aaq0180
crossref_primary_10_1186_s13059_019_1881_2
crossref_primary_10_1016_j_molcel_2017_12_007
crossref_primary_10_1038_s41467_018_03760_5
crossref_primary_10_1038_s41596_020_00481_2
crossref_primary_10_1074_jbc_RA119_007791
crossref_primary_10_1007_s40472_019_00237_2
crossref_primary_10_1007_s41204_021_00118_z
crossref_primary_10_1016_j_biomaterials_2022_121871
crossref_primary_10_1002_bit_26915
crossref_primary_10_23868_201811030
crossref_primary_10_1128_mBio_02321_18
crossref_primary_10_1515_hmbci_2021_0062
crossref_primary_10_1128_mBio_01397_17
crossref_primary_10_1093_jrr_rraa127
crossref_primary_10_1021_acsomega_8b03011
crossref_primary_10_1007_s13238_017_0460_0
crossref_primary_10_1186_s13059_019_1839_4
crossref_primary_10_1016_j_jgg_2021_05_001
crossref_primary_10_1016_j_mib_2017_05_008
crossref_primary_10_1056_NEJMoa1817426
crossref_primary_10_1021_acs_biomac_9b00783
crossref_primary_10_1523_JNEUROSCI_0621_17_2017
crossref_primary_10_1111_nep_13410
crossref_primary_10_1016_j_chom_2019_05_004
crossref_primary_10_1016_S2095_3119_17_61766_0
crossref_primary_10_1016_j_mib_2017_05_010
crossref_primary_10_1021_acssynbio_3c00501
crossref_primary_10_1002_anie_201900788
crossref_primary_10_1002_wrna_1731
crossref_primary_10_1021_acschembio_1c00895
crossref_primary_10_3389_fbioe_2021_628569
crossref_primary_10_1002_cpmb_80
crossref_primary_10_17116_molgen2023410313
crossref_primary_10_1016_j_synbio_2018_10_003
crossref_primary_10_1038_s41598_023_42174_2
crossref_primary_10_1038_s41588_021_00861_8
crossref_primary_10_1016_j_tig_2022_06_015
crossref_primary_10_1186_s12934_020_01431_z
crossref_primary_10_1360_SSV_2022_0309
crossref_primary_10_1038_s41598_020_71742_z
crossref_primary_10_1096_fj_202001065RRR
crossref_primary_10_3389_fcell_2021_769673
crossref_primary_10_1038_s41587_021_00928_1
crossref_primary_10_1371_journal_pone_0230898
crossref_primary_10_3390_cells8020186
crossref_primary_10_1126_science_aay2056
crossref_primary_10_1016_j_biomaterials_2020_120094
crossref_primary_10_1089_crispr_2022_0001
crossref_primary_10_3390_ijms21176240
crossref_primary_10_1016_j_cell_2017_10_025
crossref_primary_10_1016_j_omtn_2017_10_013
crossref_primary_10_1016_j_neuron_2018_03_040
crossref_primary_10_1038_s41417_023_00597_z
crossref_primary_10_1038_s41576_018_0082_2
crossref_primary_10_1038_s41392_023_01544_y
crossref_primary_10_1053_j_gastro_2018_11_048
crossref_primary_10_1016_j_jgg_2017_04_009
crossref_primary_10_1093_nar_gkz1078
crossref_primary_10_1111_1744_7917_12904
crossref_primary_10_3390_agriculture14030487
crossref_primary_10_1089_crispr_2023_0047
crossref_primary_10_1016_j_molcel_2018_06_021
crossref_primary_10_1038_s41576_022_00541_1
crossref_primary_10_1186_s40164_023_00457_4
crossref_primary_10_1053_j_semperi_2018_09_003
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_1016_j_ymeth_2021_06_004
crossref_primary_10_1007_s12268_021_1549_9
crossref_primary_10_1016_j_cobme_2020_100249
crossref_primary_10_1002_cpmb_100
crossref_primary_10_1002_wsbm_1408
crossref_primary_10_1038_s43586_020_00011_0
crossref_primary_10_1248_bpb_b18_00222
crossref_primary_10_1089_adt_2017_796
crossref_primary_10_1093_nar_gkae324
crossref_primary_10_1038_s41422_019_0165_4
crossref_primary_10_1038_s41467_018_08158_x
crossref_primary_10_1002_mco2_672
crossref_primary_10_1038_s41576_021_00329_9
crossref_primary_10_1016_j_tins_2023_02_005
crossref_primary_10_1038_nmeth_4483
crossref_primary_10_1093_nar_gkab174
crossref_primary_10_1016_j_molcel_2019_09_025
crossref_primary_10_1002_biot_201800195
crossref_primary_10_1016_j_omtn_2024_102257
crossref_primary_10_1016_j_bpg_2019_101633
crossref_primary_10_1186_s13227_017_0070_1
crossref_primary_10_1038_s41594_020_0499_0
crossref_primary_10_1242_dmm_048938
crossref_primary_10_1038_s41467_022_29670_1
crossref_primary_10_1021_acs_jchemed_6b00578
crossref_primary_10_1016_j_ymthe_2021_08_024
crossref_primary_10_1093_toxres_tfae105
crossref_primary_10_1080_17425247_2020_1747429
crossref_primary_10_1186_s13059_019_1762_8
crossref_primary_10_32604_biocell_2022_020570
crossref_primary_10_1016_j_biotechadv_2022_108047
crossref_primary_10_1016_j_pnpbp_2017_08_011
crossref_primary_10_3390_app11188300
crossref_primary_10_1016_j_omtn_2020_03_004
crossref_primary_10_1038_nrgastro_2017_151
crossref_primary_10_1016_j_mmm_2020_10_001
crossref_primary_10_1038_s41598_017_17387_x
crossref_primary_10_3390_ijms22010249
crossref_primary_10_1016_j_bbcan_2020_188378
crossref_primary_10_1016_j_omtn_2024_102123
crossref_primary_10_3389_fgene_2019_00750
crossref_primary_10_1021_acsnano_3c01917
crossref_primary_10_3390_biom10111523
crossref_primary_10_1016_j_gde_2019_06_009
crossref_primary_10_1007_s12274_019_2465_x
crossref_primary_10_1007_s40502_018_0423_3
crossref_primary_10_1080_15592294_2022_2106646
crossref_primary_10_1002_jcb_26099
crossref_primary_10_1016_j_carbpol_2023_121443
crossref_primary_10_1002_bies_202000315
crossref_primary_10_1093_nar_gkad052
crossref_primary_10_3390_ijms242015301
crossref_primary_10_1016_j_ymthe_2019_11_029
crossref_primary_10_3389_fcell_2021_755165
crossref_primary_10_1007_s00335_024_10099_4
crossref_primary_10_1021_jacs_2c07913
crossref_primary_10_1016_j_bbrc_2020_04_039
crossref_primary_10_1002_jcp_25796
crossref_primary_10_1038_nrg_2017_59
crossref_primary_10_1089_crispr_2017_0016
crossref_primary_10_1016_j_mib_2017_06_003
crossref_primary_10_1007_s11033_020_05820_w
crossref_primary_10_1016_j_celrep_2019_12_064
crossref_primary_10_1080_24701394_2018_1472773
crossref_primary_10_1016_j_celrep_2019_10_017
crossref_primary_10_1038_s41467_022_28106_0
crossref_primary_10_1016_j_tibtech_2020_05_013
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_1097_JS9_0000000000001081
crossref_primary_10_1016_j_molcel_2017_06_035
crossref_primary_10_1039_D1OB02019F
crossref_primary_10_1186_s13073_021_00857_3
crossref_primary_10_1016_j_yebeh_2021_108043
crossref_primary_10_1371_journal_pone_0179165
crossref_primary_10_3390_jcm8111959
crossref_primary_10_3389_fsybi_2023_1296513
crossref_primary_10_1039_C9OB02111F
crossref_primary_10_1007_s13238_020_00699_6
crossref_primary_10_1016_j_colsurfb_2023_113146
crossref_primary_10_1007_s10539_018_9664_9
crossref_primary_10_1016_j_omtn_2018_05_010
crossref_primary_10_1080_19336934_2020_1832416
crossref_primary_10_1016_j_celrep_2018_09_090
crossref_primary_10_1073_pnas_2216822120
crossref_primary_10_1371_journal_pone_0240256
crossref_primary_10_1016_j_ymthe_2021_07_011
crossref_primary_10_1016_j_cell_2019_07_044
crossref_primary_10_1089_wound_2020_1287
crossref_primary_10_1007_s00294_021_01211_1
crossref_primary_10_1111_cpr_12820
crossref_primary_10_1016_j_cell_2018_09_010
crossref_primary_10_1038_s41467_018_08034_8
crossref_primary_10_1038_nature23875
crossref_primary_10_1038_s41598_021_03160_8
crossref_primary_10_1016_j_tins_2019_10_003
crossref_primary_10_1021_acsnano_7b02884
crossref_primary_10_1152_physrev_00046_2017
crossref_primary_10_12688_f1000research_11113_1
crossref_primary_10_1080_21655979_2022_2162667
crossref_primary_10_1186_s13068_019_1637_y
crossref_primary_10_3389_fbioe_2020_00083
crossref_primary_10_1007_s00125_019_4908_z
crossref_primary_10_1038_s41586_022_05140_y
crossref_primary_10_1038_s41587_021_01039_7
crossref_primary_10_1074_jbc_H118_006147
crossref_primary_10_1038_s41467_022_32743_w
crossref_primary_10_1021_acssynbio_9b00188
crossref_primary_10_3390_medicina57030225
crossref_primary_10_1038_s41598_023_50776_z
crossref_primary_10_1167_tvst_9_9_47
crossref_primary_10_18008_1816_5095_2019_4_479_486
crossref_primary_10_3390_agriculture13020298
crossref_primary_10_1016_j_molcel_2018_12_003
crossref_primary_10_1038_s41587_018_0011_0
crossref_primary_10_3390_ijms23063002
crossref_primary_10_2174_1566523220666201214115024
crossref_primary_10_1016_j_cpb_2020_100171
crossref_primary_10_1186_s13059_018_1515_0
crossref_primary_10_1016_j_mam_2019_03_004
crossref_primary_10_1002_1873_3468_13127
crossref_primary_10_1186_s12896_020_00650_x
crossref_primary_10_3390_cells11060999
crossref_primary_10_1002_stem_3006
crossref_primary_10_1186_s13059_018_1591_1
crossref_primary_10_1016_j_ebiom_2017_05_015
crossref_primary_10_1016_j_lmd_2024_100011
crossref_primary_10_1016_j_devcel_2018_04_021
crossref_primary_10_3390_bioengineering8090119
crossref_primary_10_1007_s00018_019_03252_9
crossref_primary_10_1038_s41577_018_0046_y
crossref_primary_10_1021_acssynbio_6b00339
crossref_primary_10_1038_s41467_021_27836_x
crossref_primary_10_1038_s41467_023_39087_z
crossref_primary_10_1126_sciadv_1601910
crossref_primary_10_3389_fmicb_2017_02194
crossref_primary_10_1111_pre_12397
crossref_primary_10_1073_pnas_2016539117
crossref_primary_10_1073_pnas_1718193115
crossref_primary_10_1093_nar_gkab1197
crossref_primary_10_1097_CAD_0000000000000571
crossref_primary_10_1093_jleuko_qiad074
crossref_primary_10_1186_s12967_022_03738_4
crossref_primary_10_1002_jcp_26141
crossref_primary_10_1007_s00335_017_9702_y
crossref_primary_10_1093_plphys_kiab591
crossref_primary_10_3389_fgene_2024_1382445
crossref_primary_10_1093_nar_gky1300
crossref_primary_10_1016_j_cell_2017_11_032
crossref_primary_10_1002_jgm_3082
crossref_primary_10_1093_nar_gkz713
crossref_primary_10_3389_fcell_2020_583164
crossref_primary_10_1038_s41467_024_49987_3
crossref_primary_10_1016_j_bcp_2023_115555
crossref_primary_10_1038_s41598_018_36740_2
crossref_primary_10_1177_0963689717753378
crossref_primary_10_1016_j_cr_2019_08_002
crossref_primary_10_1021_acssynbio_9b00284
crossref_primary_10_1038_s41467_019_09694_w
crossref_primary_10_1371_journal_pone_0187236
crossref_primary_10_1038_s41467_020_14465_z
crossref_primary_10_1038_s41598_019_45265_1
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1038_s43018_020_0040_8
crossref_primary_10_3390_jcm12031046
crossref_primary_10_1146_annurev_genet_030723_120717
crossref_primary_10_1007_s13534_021_00199_4
crossref_primary_10_3389_fgeed_2020_618385
crossref_primary_10_1093_nar_gkae283
crossref_primary_10_1007_s12274_024_6729_8
crossref_primary_10_1089_crispr_2018_0010
crossref_primary_10_1038_s41587_020_0412_8
crossref_primary_10_1093_nar_gkab1295
crossref_primary_10_1002_hep4_1933
crossref_primary_10_1016_j_jgg_2020_10_007
crossref_primary_10_1016_j_ygeno_2025_111014
crossref_primary_10_1038_s41467_018_06129_w
crossref_primary_10_1016_j_trac_2022_116750
crossref_primary_10_3389_fcell_2022_750833
crossref_primary_10_1016_j_gene_2022_146595
crossref_primary_10_1016_j_ymthe_2024_10_003
crossref_primary_10_3389_fimmu_2022_919550
crossref_primary_10_1093_nar_gkaa1199
crossref_primary_10_1111_pbi_13225
crossref_primary_10_7554_eLife_31628
crossref_primary_10_1016_j_preteyeres_2018_08_003
crossref_primary_10_1002_biot_201700586
crossref_primary_10_1146_annurev_immunol_042718_041447
crossref_primary_10_1128_Spectrum_01017_21
crossref_primary_10_1007_s13205_019_1966_3
crossref_primary_10_1186_s12934_017_0815_5
crossref_primary_10_1111_febs_16457
crossref_primary_10_3389_fgeed_2020_571239
crossref_primary_10_1002_wrna_1641
crossref_primary_10_1038_s41388_023_02929_7
crossref_primary_10_1038_s41598_019_47629_z
crossref_primary_10_1016_j_coisb_2017_08_008
crossref_primary_10_2139_ssrn_3385124
crossref_primary_10_1038_s41467_017_01591_4
crossref_primary_10_1080_22221751_2020_1793689
crossref_primary_10_3390_pharmaceutics14051087
crossref_primary_10_1038_s12276_019_0339_7
crossref_primary_10_1016_j_jbc_2022_102085
crossref_primary_10_12688_f1000research_11243_1
crossref_primary_10_1016_j_molmed_2020_01_013
crossref_primary_10_1186_s12915_023_01714_y
crossref_primary_10_1186_s12967_024_05570_4
crossref_primary_10_3390_pharmaceutics12080767
crossref_primary_10_1089_crispr_2018_0026
crossref_primary_10_1016_j_tibtech_2020_06_009
crossref_primary_10_15406_jmen_2018_06_00225
crossref_primary_10_1038_s41380_020_00944_8
crossref_primary_10_1371_journal_pone_0249439
crossref_primary_10_1111_pbi_13244
crossref_primary_10_16967_23898186_650
crossref_primary_10_1016_j_bcp_2019_113672
crossref_primary_10_1038_s41467_017_02214_8
crossref_primary_10_1093_bib_bbad133
crossref_primary_10_1186_s13059_023_02987_w
crossref_primary_10_1002_ecs2_70054
crossref_primary_10_1016_j_cej_2024_158522
crossref_primary_10_1186_s12967_023_04610_9
crossref_primary_10_1016_j_isci_2022_104389
crossref_primary_10_1038_s41594_017_0004_6
crossref_primary_10_1186_s12915_018_0617_1
crossref_primary_10_1002_wdev_392
crossref_primary_10_1002_wdev_272
crossref_primary_10_1038_s41467_018_07827_1
crossref_primary_10_1242_dev_181974
crossref_primary_10_1128_spectrum_00003_24
crossref_primary_10_1016_j_pmpp_2025_102640
crossref_primary_10_1186_s12967_024_05957_3
crossref_primary_10_1038_s41587_023_01756_1
crossref_primary_10_1007_s10709_021_00146_2
crossref_primary_10_1038_nsmb_3373
crossref_primary_10_1007_s00299_024_03346_0
crossref_primary_10_1038_nsmb_3486
crossref_primary_10_1073_pnas_1810062115
crossref_primary_10_1089_cell_2023_0094
crossref_primary_10_1016_j_gene_2024_149075
crossref_primary_10_1016_j_molcel_2020_07_005
crossref_primary_10_1089_crispr_2018_0050
crossref_primary_10_1021_acssensors_2c00024
crossref_primary_10_1038_s41467_019_14102_4
crossref_primary_10_1111_pbi_13383
crossref_primary_10_3390_ijms22010319
crossref_primary_10_1111_pbi_13021
crossref_primary_10_1002_ange_201914575
crossref_primary_10_1016_j_talo_2023_100225
crossref_primary_10_1128_mSphere_00345_19
Cites_doi 10.1089/hum.2015.084
10.1016/j.cell.2015.06.059
10.1038/nmeth.2408
10.1038/nbt.3199
10.1126/science.1078395
10.1126/science.1254287
10.1038/nbt.2508
10.1128/MCB.15.4.1968
10.1101/gr.161638.113
10.1016/j.cell.2013.08.022
10.1128/jb.174.17.5593-5596.1992
10.1038/nbt.2675
10.1126/science.1231143
10.1007/s12033-007-0010-8
10.1093/nar/gkr606
10.1038/nbt.1775
10.1038/ncomms10548
10.1126/science.aad5177
10.1038/nprot.2015.117
10.1038/nmeth.2845
10.1007/s13238-014-0032-5
10.1126/science.aaa5945
10.1038/nprot.2013.143
10.1016/j.cell.2014.01.027
10.1038/nmeth.3312
10.1038/nbt.2884
10.1126/science.aab1028
10.1038/mt.2014.226
10.1073/pnas.1501698112
10.1038/nature09523
10.1016/j.stem.2014.04.020
10.1038/srep05405
10.1093/nar/gkq787
10.1073/pnas.1512503112
10.1002/jgm.1052
10.1016/j.cell.2012.11.054
10.1016/0168-9525(96)10019-6
10.1016/S0065-2660(08)60144-3
10.1002/anie.201606123
10.1126/science.aad5227
10.1038/srep15577
10.1371/journal.pone.0109213
10.1038/nbt.3609
10.7554/eLife.04766
10.1016/j.jmb.2004.07.031
10.1186/s13229-015-0048-6
10.1038/nrg3899
10.1161/CIRCRESAHA.115.304351
10.1038/nbt.3439
10.1038/celldisc.2016.9
10.1038/nbt.2652
10.1038/nchembio.1753
10.1038/nrg3763
10.1111/febs.13416
10.1038/nature09886
10.1038/nmeth.1670
10.1093/nar/gkt555
10.1038/317230a0
10.1089/104303404322959551
10.1038/nbt.3055
10.1038/srep23549
10.1038/nmeth.3047
10.1038/nbt.3245
10.1038/nature14592
10.1016/j.chembiol.2014.12.011
10.1038/nm953
10.1371/journal.pone.0115987
10.1126/science.1247005
10.1016/j.tibtech.2013.04.004
10.1038/nbt.2661
10.1073/pnas.82.5.1391
10.1002/dvg.22720
10.1038/nbt.3471
10.1016/j.stem.2016.01.022
10.1126/science.aad5725
10.1038/nature13906
10.1038/nbt.3235
10.1093/genetics/161.3.1169
10.1038/nbt.1755
10.1093/nar/gkl645
10.1016/j.cell.2016.01.039
10.1038/nbt.3658
10.1016/j.stem.2014.06.011
10.1128/JB.01412-07
10.1038/nbt.3481
10.1016/j.jim.2003.10.010
10.1126/science.1138140
10.1128/MCB.14.12.8096
10.1371/journal.pcbi.0010060
10.1038/nbt.2507
10.1093/nar/gkp548
10.1038/nature14299
10.1038/nchembio.1793
10.1073/pnas.1520244113
10.1242/bio.019067
10.1038/nbt.3149
10.1038/nature17664
10.1089/hum.2015.074
10.1038/nbt.3404
10.1089/104303401753153947
10.1016/j.cell.2015.09.038
10.1038/nbt.3469
10.1126/science.2660260
10.1093/nar/gkv137
10.1038/cr.2014.11
10.1101/gr.179044.114
10.1126/science.1254445
10.1016/0092-8674(86)90463-0
10.1016/j.cell.2013.08.021
10.1016/j.stem.2013.11.002
10.1038/nbt.2501
10.1038/nbt.2916
10.1126/science.1246981
10.1038/nbt.2842
10.1242/dev.099085
10.1371/journal.pone.0113232
10.1038/srep10833
10.1093/bioinformatics/btv423
10.1126/science.aad5143
10.1016/j.stem.2015.01.003
10.1093/genetics/122.3.519
10.1371/journal.pone.0068708
10.1038/nmeth.3871
10.1016/j.cell.2016.08.056
10.7554/eLife.03401
10.1073/pnas.1208507109
10.1126/science.1079512
10.1093/nar/gkv601
10.1038/nrg3900
10.1016/j.stemcr.2014.09.013
10.1126/science.1258096
10.1038/nrm3486
10.1038/gt.2015.2
10.1038/nmeth.2600
10.1016/j.stemcr.2014.10.013
10.1016/j.cell.2013.04.025
10.1126/science.1232033
10.1073/pnas.1313587110
10.1002/j.1460-2075.1993.tb05691.x
10.1038/gt.2008.145
10.1038/nbt.3528
10.1038/ng.3258
10.1016/j.celrep.2013.06.020
10.1038/nbt.2623
10.1038/nature13589
10.1038/ncomms6507
10.1038/nature13166
10.1016/j.febslet.2014.09.008
10.1016/B978-0-12-801185-0.00006-4
10.1126/science.aad8282
10.1016/j.cell.2014.09.029
10.1016/j.stem.2014.05.018
10.1038/cr.2013.45
10.1038/mtna.2014.38
10.1073/pnas.1521077112
10.1016/j.cell.2014.09.039
10.1038/ncomms7244
10.1038/nbt.2951
10.1126/science.aaf8729
10.1101/gr.171264.113
10.1016/j.molcel.2015.09.020
10.1099/vir.0.000139
10.1016/j.stem.2015.06.001
10.1038/nmeth.2681
10.1016/j.stem.2016.04.013
10.1038/nmeth.3733
10.1038/nmeth.3325
10.1038/sj.mt.6300314
10.1016/j.cell.2014.11.052
10.1101/gr.171322.113
10.1038/mt.2009.255
10.1038/nbt.3155
10.7554/eLife.00471
10.1126/science.1151526
10.1089/hum.2014.111
10.1126/science.1178811
10.1016/j.cell.2014.09.014
10.1146/annurev-genet-051710-150955
10.1038/nbt.3117
10.1038/nbt.2647
10.1093/nar/gkq704
10.1089/hum.2015.087
10.1038/nmeth.2598
10.1517/14712598.4.6.773
10.1038/nature13695
10.1534/genetics.113.155382
10.1038/nrg2842
10.1186/s13073-015-0215-6
10.1126/science.1225829
10.1016/j.cell.2013.02.022
10.1093/nar/gkw159
10.1038/nmeth.3284
10.1093/nar/gkr188
10.1021/ja512664v
10.1038/nmeth.3630
10.1038/nbt.2908
10.1016/j.cell.2015.02.038
10.1038/nbt.2673
10.1038/nbt1353
10.1038/nbt.3190
10.1038/71889
10.1038/mt.2015.218
10.1038/nature13902
10.1038/nprot.2007.226
10.1038/nbt.2808
10.1038/nature17945
10.1093/nar/gkh703
10.1016/j.cell.2006.07.024
10.1093/nar/gkv993
10.1038/cr.2013.122
10.1101/gr.173427.114
10.1016/j.cell.2013.06.044
10.1038/nrg.2016.28
10.1038/nbt.3198
10.1038/nbt.3081
10.1038/nbt.2909
10.1186/s13073-015-0178-7
10.1038/nature14136
10.1016/j.stem.2013.10.016
10.1126/science.281.5380.1161
10.1016/j.cell.2014.05.010
10.1016/j.jbiotec.2015.04.024
10.1016/j.stem.2013.03.006
10.1186/s13059-015-0817-8
10.1038/nbt.3620
10.1038/nature17946
10.1016/j.stem.2015.07.001
10.1016/j.tim.2013.09.001
10.1038/nature16526
10.1126/science.1178817
10.1038/nbt.2889
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2016.10.044
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 36
ExternalDocumentID PMC5235943
27866654
10_1016_j_cell_2016_10_044
S0092867416314659
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118062
– fundername: NIGMS NIH HHS
  grantid: R01 GM065400
– fundername: Howard Hughes Medical Institute
– fundername: NIBIB NIH HHS
  grantid: R01 EB022376
– fundername: NIGMS NIH HHS
  grantid: F32 GM112366
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-aef4ada15b2259a977f73f99f09152bee4f2c5075e107027cd721884aac9d6663
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:40:46 EDT 2025
Fri Jul 11 01:00:00 EDT 2025
Fri Jul 11 00:31:49 EDT 2025
Mon Jul 21 06:01:41 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 02:16:56 EDT 2025
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-aef4ada15b2259a977f73f99f09152bee4f2c5075e107027cd721884aac9d6663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416314659
PMID 27866654
PQID 1842545640
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5235943
proquest_miscellaneous_2000433414
proquest_miscellaneous_1842545640
pubmed_primary_27866654
crossref_primary_10_1016_j_cell_2016_10_044
crossref_citationtrail_10_1016_j_cell_2016_10_044
elsevier_sciencedirect_doi_10_1016_j_cell_2016_10_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-12
PublicationDateYYYYMMDD 2017-01-12
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chavez, Tuttle, Pruitt, Ewen-Campen, Chari, Ter-Ovanesyan, Haque, Cecchi, Kowal, Buchthal (bib19) 2016; 13
Swiech, Heidenreich, Banerjee, Habib, Li, Trombetta, Sur, Zhang (bib184) 2015; 33
Kleinstiver, Pattanayak, Prew, Tsai, Nguyen, Zheng, Joung (bib89) 2016; 529
Jiang, Bikard, Cox, Zhang, Marraffini (bib76) 2013; 31
Bassett, Tibbit, Ponting, Liu (bib7) 2013; 4
Saleh-Gohari, Helleday (bib165) 2004; 32
Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadán, Moineau (bib46) 2010; 468
Sussman, Chadsey, Fauce, Engel, Bruett, Monnat, Stoddard, Seligman (bib183) 2004; 342
Li, Huang, Zhao, Wright, Carpenter, Spalding, Weeks, Yang (bib97) 2011; 39
Bibikova, Golic, Golic, Carroll (bib8) 2002; 161
Pinder, Salsman, Dellaire (bib148) 2015; 43
Wu, Scott, Kriz, Chiu, Hsu, Dadon, Cheng, Trevino, Konermann, Chen (bib209) 2014; 32
Nihongaki, Kawano, Nakajima, Sato (bib132) 2015; 33
Wang, Mou, Li, Li, Hough, Tran, Li, Yin, Anderson, Sontheimer (bib203) 2015; 26
Chu, Weber, Wefers, Wurst, Sander, Rajewsky, Kühn (bib26) 2015; 33
Maruyama, Dougan, Truttmann, Bilate, Ingram, Ploegh (bib121) 2015; 33
Grizot, Smith, Daboussi, Prieto, Redondo, Merino, Villate, Thomas, Lemaire, Montoya (bib53) 2009; 37
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib78) 2012; 337
Chavez, Scheiman, Vora, Pruitt, Tuttle, Iyer E, Lin, Kiani, Guzman, Wiegand (bib18) 2015; 12
Qi, Larson, Gilbert, Doudna, Weissman, Arkin, Lim (bib153) 2013; 152
Cho, Kim, Kim, Kim (bib24) 2013; 31
Paquet, Kwart, Chen, Sproul, Jacob, Teo, Olsen, Gregg, Noggle, Tessier-Lavigne (bib141) 2016; 533
Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib218) 2014; 15
Perez-Pinera, Kocak, Vockley, Adler, Kabadi, Polstein, Thakore, Glass, Ousterout, Leong (bib147) 2013; 10
Oye, Esvelt, Appleton, Catteruccia, Church, Kuiken, Lightfoot, McNamara, Smidler, Collins (bib140) 2014; 345
Chang, Sun, Gao, Zhu, Xu, Zhu, Xiong, Xi (bib17) 2013; 23
Song, Yang, Xu, Zhu, Chen, Zhang (bib180) 2016; 7
Li, Teng, Li, Zhou (bib99) 2013; 31
Kim, Bae, Park, Kim, Kim, Yu, Hwang, Kim, Kim (bib85) 2015; 12
Tsai, Wyvekens, Khayter, Foden, Thapar, Reyon, Goodwin, Aryee, Joung (bib193) 2014; 32
Miyaoka, Berman, Cooper, Mayerl, Chan, Zhang, Karlin-Neumann, Conklin (bib125) 2016; 6
Polstein, Gersbach (bib150) 2015; 11
Yu, Liu, Ma, Liu, Xu, Zhang, Liu, La Russa, Xie, Ding, Qi (bib222) 2015; 16
Keung, Joung, Khalil, Collins (bib82) 2015; 16
Zhen, Hua, Liu, Gao, Fu, Wan, Dong, Song, Gao (bib230) 2015; 22
Zhang, Rajan, Seifert, Mondragón, Sontheimer (bib229) 2015; 60
Gaj, Gersbach, Barbas (bib43) 2013; 31
Polstein, Perez-Pinera, Kocak, Vockley, Bledsoe, Song, Safi, Crawford, Reddy, Gersbach (bib151) 2015; 25
Yang, Wang, Shivalila, Cheng, Shi, Jaenisch (bib214) 2013; 154
Kim, Kim, Cho, Kim, Kim (bib84) 2014; 24
Sanjana, Shalem, Zhang (bib169) 2014; 11
Pattanayak, Ramirez, Joung, Liu (bib144) 2011; 8
Urnov, Rebar, Holmes, Zhang, Gregory (bib195) 2010; 11
Li, Guan, Du, Jin, Wu, Liu, Wang, Hu, Griffin, Shattock, Hu (bib100) 2015; 96
Li, Fujimoto, Sasakawa, Shirai, Ohkame, Sakuma, Tanaka, Amano, Watanabe, Sakurai (bib101) 2015; 4
Xie, Ye, Chang, Beyer, Wang, Muench, Kan (bib211) 2014; 24
Sapranauskas, Gasiunas, Fremaux, Barrangou, Horvath, Siksnys (bib170) 2011; 39
Mou, Kennedy, Anderson, Yin, Xue (bib128) 2015; 7
Sanjana (bib168) 2016
Smith, Abalde-Atristain, He, Brodsky, Braunstein, Chaudhari, Jang, Cheng, Ye (bib178) 2015; 23
Deltcheva, Chylinski, Sharma, Gonzales, Chao, Pirzada, Eckert, Vogel, Charpentier (bib31) 2011; 471
Guilinger, Thompson, Liu (bib55) 2014; 32
Carroll (bib14) 2008; 15
Heckl, Kowalczyk, Yudovich, Belizaire, Puram, McConkey, Thielke, Aster, Regev, Ebert (bib60) 2014; 32
Thomas, Folger, Capecchi (bib190) 1986; 44
Kearns, Pham, Tabak, Genga, Silverstein, Garber, Maehr (bib81) 2015; 12
Ousterout, Kabadi, Thakore, Majoros, Reddy, Gersbach (bib139) 2015; 6
Wu, Yang, Colosi (bib207) 2010; 18
Hsu, Lander, Zhang (bib70) 2014; 157
Chakraborty, Ji, Kabadi, Gersbach, Christoforou, Leong (bib16) 2014; 3
Jiang, Taylor, Chen, Kornfeld, Zhou, Thompson, Nogales, Doudna (bib77) 2016; 351
Thakore, Black, Hilton, Gersbach (bib189) 2016; 13
al Yacoub, Romanowska, Haritonova, Foerster (bib1) 2007; 9
Hou, Zhang, Propson, Howden, Chu, Sontheimer, Thomson (bib66) 2013; 110
Thakore, D’Ippolito, Song, Safi, Shivakumar, Kabadi, Reddy, Crawford, Gersbach (bib188) 2015; 12
Ramakrishna, Kwaku Dad, Beloor, Gopalappa, Lee, Kim (bib154) 2014; 24
Hou, Chen, Wang, Yu, Chen, Jiang, Zhuang, Ho, Hou, Huang, Guo (bib67) 2015; 5
Gilbert, Horlbeck, Adamson, Villalta, Chen, Whitehead, Guimaraes, Panning, Ploegh, Bassik (bib50) 2014; 159
Mironov, Visconti, Markwald (bib124) 2004; 4
Kleinstiver, Prew, Tsai, Nguyen, Topkar, Zheng, Joung (bib87) 2015; 33
Ramanan, Shlomai, Cox, Schwartz, Michailidis, Bhatta, Scott, Zhang, Rice, Bhatia (bib155) 2015; 5
Hwang, Fu, Reyon, Maeder, Tsai, Sander, Peterson, Yeh, Joung (bib72) 2013; 31
Kuscu, Arslan, Singh, Thorpe, Adli (bib94) 2014; 32
Li, Qiu, Shao, Chen, Guan, Liu, Li, Gao, Wang, Lu (bib98) 2013; 31
Konermann, Brigham, Trevino, Joung, Abudayyeh, Barcena, Hsu, Habib, Gootenberg, Nishimasu (bib92) 2015; 517
Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib157) 2013; 8
Biswas, Vagner, Ehrlich (bib10) 1992; 174
Zalatan, Lee, Almeida, Gilbert, Whitehead, La Russa, Tsai, Weissman, Dueber, Qi, Lim (bib223) 2015; 160
Auer, Duroure, De Cian, Concordet, Del Bene (bib3) 2014; 24
Wright, Sternberg, Taylor, Staahl, Bardales, Kornfeld, Doudna (bib206) 2015; 112
Baltimore, Berg, Botchan, Carroll, Charo, Church, Corn, Daley, Doudna, Fenner (bib4) 2015; 348
Hirano, Gootenberg, Horii, Abudayyeh, Kimura, Hsu, Nakane, Ishitani, Hatada, Zhang (bib64) 2016; 164
Richardson, Ray, DeWitt, Curie, Corn (bib159) 2016; 34
Sánchez-Rivera, Papagiannakopoulos, Romero, Tammela, Bauer, Bhutkar, Joshi, Subbaraj, Bronson, Xue, Jacks (bib166) 2014; 516
Lombardo, Genovese, Beausejour, Colleoni, Lee, Kim, Ando, Urnov, Galli, Gregory (bib111) 2007; 25
Parnas, Jovanovic, Eisenhaure, Herbst, Dixit, Ye, Przybylski, Platt, Tirosh, Sanjana (bib143) 2015; 162
Gantz, Bier (bib44) 2015; 348
Wang, Lin, Pedrosa, Hrabovsky, Zhang, Guo, Lachman, Zheng (bib204) 2015; 6
Kleinstiver, Prew, Tsai, Topkar, Nguyen, Zheng, Gonzales, Li, Peterson, Yeh (bib88) 2015; 523
Cockrell, Kafri (bib27) 2007; 36
Guilinger, Pattanayak, Reyon, Tsai, Sander, Joung, Liu (bib54) 2014; 11
Platt, Chen, Zhou, Yim, Swiech, Kempton, Dahlman, Parnas, Eisenhaure, Jovanovic (bib149) 2014; 159
Osborn, Gabriel, Webber, DeFeo, McElroy, Jarjour, Starker, Wagner, Joung, Voytas (bib138) 2015; 26
Gasiunas, Siksnys (bib47) 2013; 21
Zeitelhofer, Vessey, Xie, Tübing, Thomas, Kiebler, Dahm (bib224) 2007; 2
Zhou, Zhu, Cai, Yuan, Li, Huang, Wei (bib231) 2014; 509
Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib49) 2013; 154
Jasin (bib74) 1996; 12
Long, McAnally, Shelton, Mireault, Bassel-Duby, Olson (bib112) 2014; 345
Robert, Barbeau, Éthier, Dostie, Pelletier (bib160) 2015; 7
McDonald, Celik, Rois, Fishberger, Fowler, Rees, Kramer, Martens, Edwards, Challen (bib122) 2016; 5
Chen, Cao, Xiong, Petersen, Dong, Tao, Huang, Du, Zhang (bib21) 2015; 17
Xu, Tao, Gao, Zhang, Li, Zou, Ruan, Wang, Xu, Hu (bib212) 2016; 2
Veres, Gosis, Ding, Collins, Ragavendran, Brand, Erdin, Cowan, Talkowski, Musunuru (bib197) 2014; 15
Zetsche, Volz, Zhang (bib226) 2015; 33
Hockemeyer, Jaenisch (bib65) 2016; 18
Kleinstiver, Tsai, Prew, Nguyen, Welch, Lopez, McCaw, Aryee, Joung (bib90) 2016; 34
Gori, Hsu, Maeder, Shen, Welstead, Bumcrot (bib52) 2015; 26
Jain, Ramanan, Schepers, Dalvie, Panda, Fleming, Bhatia (bib73) 2016; 55
Tanenbaum, Gilbert, Qi, Weissman, Vale (bib187) 2014; 159
Ding, Regan, Xia, Oostrom, Cowan, Musunuru (bib33) 2013; 12
Nihongaki, Yamamoto, Kawano, Suzuki, Sato (bib133) 2015; 22
Fonfara, Richter, Bratovič, Le Rhun, Charpentier (bib39) 2016; 532
Schumann, Lin, Boyer, Simeonov, Subramaniam, Gate, Haliburton, Ye, Bluestone, Doudna, Marson (bib171) 2015; 112
Lo, Pickle, Lin, Ralston, Gurling, Schartner, Bian, Doudna, Meyer (bib110) 2013; 195
Boch, Scholze, Schornack, Landgraf, Hahn, Kay, Lahaye, Nickstadt, Bonas (bib11) 2009; 326
Gasiunas, Barrangou, Horvath, Siksnys (bib48) 2012; 109
Wang, Peng, Ehrhardt, Storm, Kay (bib199) 2004; 15
Yang, Guell, Byrne, Yang, De Los Angeles, Mali, Aach, Kim-Kiselak, Briggs, Rios (bib215) 2013; 41
Shalem, Sanjana, Hartenian, Shi, Scott, Mikkelsen, Heckl, Ebert, Root, Doench, Zhang (bib173) 2014; 343
Cheng, Wang, Yang, Shi, Katz, Theunissen, Rangarajan, Shivalila, Dadon, Jaenisch (bib22) 2013; 23
Rosen, Morrison, Masri, Brown, Springstubb, Sussman, Stoddard, Seligman (bib162) 2006; 34
Kumar, Keller, Makalou, Sutton (bib93) 2001; 12
Lin, Yang, Kuo, Liu, Yang, Sung, Lin, Wang, Wang, Shen (bib105) 2014; 3
Wyvekens, Topkar, Khayter, Joung, Tsai (bib210) 2015; 26
Schwank, Koo, Sasselli, Dekkers, Heo, Demircan, Sasaki, Boymans, Cuppen, van der Ent (bib172) 2013; 13
Liang, Potter, Kumar, Zou, Quintanilla, Sridharan, Carte, Chen, Roark, Ranganathan (bib102) 2015; 208
Rong, Zhu, Xu, Fu (bib161) 2014; 5
Heyer, Ehmsen, Liu (bib62) 2010; 44
Miller, Tan, Qiao, Barlow, Wang, Xia, Meng, Paschon, Leung, Hinkley (bib123) 2011; 29
Takahashi, Yamanaka (bib186) 2006; 126
Findlay, Boyle, Hause, Klein, Shendure (bib233) 2014; 513
Maddalo, Manchado, Concepcion, Bonetti, Vidigal, Han, Ogrodowski, Crippa, Rekhtman, de Stanchina (bib116) 2014; 516
Fu, Sander, Reyon, Cascio, Joung (bib42) 2014; 32
Hwang, Fu, Reyon, Maeder, Kaini, Sander, Joung, Peterson, Yeh (bib71) 2013; 8
Haft, Selengut, Mongodin, Nelson (bib57) 2005; 1
Niu, Shen, Cui, Chen, Wang, Wang, Kang, Zhao, Si, Li (bib135) 2014; 156
Yang, Grishin, Wang, Aach, Zhang, Chari, Homsy, Cai, Zhao, Fan (bib216) 2014; 5
Hai, Teng, Guo, Li, Zhou (bib58) 2014; 24
Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib118) 2013; 31
Nelson, Hakim, Ousterout, Thakore, Moreb, Castellanos Rivera, Madhavan, Pan, Ran, Yan (bib131) 2016; 351
Vartak, Raghavan (bib196) 2015; 282
Yin, Xue, Chen, Bogorad, Benedetti, Grompe, Koteliansky, Sharp, Jacks, Anderson (bib219) 2014; 32
Gantz, Jasinskiene, Tatarenkova, Fazekas,
Bassett (10.1016/j.cell.2016.10.044_bib7) 2013; 4
Liu (10.1016/j.cell.2016.10.044_bib109) 2016; 167
Nihongaki (10.1016/j.cell.2016.10.044_bib133) 2015; 22
Peabody (10.1016/j.cell.2016.10.044_bib146) 1993; 12
Hai (10.1016/j.cell.2016.10.044_bib58) 2014; 24
Swiech (10.1016/j.cell.2016.10.044_bib184) 2015; 33
Jeggo (10.1016/j.cell.2016.10.044_bib75) 1998; 38
Vartak (10.1016/j.cell.2016.10.044_bib196) 2015; 282
Wang (10.1016/j.cell.2016.10.044_bib199) 2004; 15
Baltimore (10.1016/j.cell.2016.10.044_bib4) 2015; 348
Sander (10.1016/j.cell.2016.10.044_bib167) 2014; 32
Smithies (10.1016/j.cell.2016.10.044_bib179) 1985; 317
Wu (10.1016/j.cell.2016.10.044_bib209) 2014; 32
Li (10.1016/j.cell.2016.10.044_bib99) 2013; 31
Luo (10.1016/j.cell.2016.10.044_bib114) 2000; 18
Tanenbaum (10.1016/j.cell.2016.10.044_bib187) 2014; 159
Gantz (10.1016/j.cell.2016.10.044_bib45) 2015; 112
Rong (10.1016/j.cell.2016.10.044_bib161) 2014; 5
Yang (10.1016/j.cell.2016.10.044_bib217) 2016; 34
Kumar (10.1016/j.cell.2016.10.044_bib93) 2001; 12
Saleh-Gohari (10.1016/j.cell.2016.10.044_bib165) 2004; 32
Thakore (10.1016/j.cell.2016.10.044_bib189) 2016; 13
Li (10.1016/j.cell.2016.10.044_bib98) 2013; 31
Tsai (10.1016/j.cell.2016.10.044_bib193) 2014; 32
Wang (10.1016/j.cell.2016.10.044_bib203) 2015; 26
Nihongaki (10.1016/j.cell.2016.10.044_bib132) 2015; 33
Davis (10.1016/j.cell.2016.10.044_bib30) 2015; 11
Platt (10.1016/j.cell.2016.10.044_bib149) 2014; 159
Yin (10.1016/j.cell.2016.10.044_bib219) 2014; 32
Qi (10.1016/j.cell.2016.10.044_bib153) 2013; 152
Shi (10.1016/j.cell.2016.10.044_bib175) 2015; 33
Haft (10.1016/j.cell.2016.10.044_bib57) 2005; 1
Liu (10.1016/j.cell.2016.10.044_bib107) 2015; 31
Lin (10.1016/j.cell.2016.10.044_bib106) 2014; 3
Lin (10.1016/j.cell.2016.10.044_bib104) 1985; 82
Xue (10.1016/j.cell.2016.10.044_bib213) 2014; 514
Sapranauskas (10.1016/j.cell.2016.10.044_bib170) 2011; 39
Rouet (10.1016/j.cell.2016.10.044_bib163) 1994; 14
Kuscu (10.1016/j.cell.2016.10.044_bib94) 2014; 32
McDonald (10.1016/j.cell.2016.10.044_bib122) 2016; 5
Smith (10.1016/j.cell.2016.10.044_bib177) 2014; 15
Maruyama (10.1016/j.cell.2016.10.044_bib121) 2015; 33
Gasiunas (10.1016/j.cell.2016.10.044_bib48) 2012; 109
Kearns (10.1016/j.cell.2016.10.044_bib81) 2015; 12
Ramanan (10.1016/j.cell.2016.10.044_bib155) 2015; 5
Yin (10.1016/j.cell.2016.10.044_bib218) 2014; 15
Bibikova (10.1016/j.cell.2016.10.044_bib8) 2002; 161
Tabebordbar (10.1016/j.cell.2016.10.044_bib185) 2016; 351
Kim (10.1016/j.cell.2016.10.044_bib85) 2015; 12
Deveau (10.1016/j.cell.2016.10.044_bib32) 2008; 190
Maasho (10.1016/j.cell.2016.10.044_bib115) 2004; 284
Zuris (10.1016/j.cell.2016.10.044_bib232) 2015; 33
Capecchi (10.1016/j.cell.2016.10.044_bib13) 1989; 244
Miller (10.1016/j.cell.2016.10.044_bib123) 2011; 29
Chen (10.1016/j.cell.2016.10.044_bib20) 2015; 160
Liang (10.1016/j.cell.2016.10.044_bib102) 2015; 208
Long (10.1016/j.cell.2016.10.044_bib113) 2016; 351
Gupta (10.1016/j.cell.2016.10.044_bib56) 2011; 39
Choulika (10.1016/j.cell.2016.10.044_bib25) 1995; 15
Tsai (10.1016/j.cell.2016.10.044_bib194) 2015; 33
Park (10.1016/j.cell.2016.10.044_bib142) 2015; 17
Hemphill (10.1016/j.cell.2016.10.044_bib61) 2015; 137
Zhang (10.1016/j.cell.2016.10.044_bib229) 2015; 60
Hsu (10.1016/j.cell.2016.10.044_bib69) 2013; 31
Maeder (10.1016/j.cell.2016.10.044_bib117) 2013; 10
Deltcheva (10.1016/j.cell.2016.10.044_bib31) 2011; 471
Sussman (10.1016/j.cell.2016.10.044_bib183) 2004; 342
Li (10.1016/j.cell.2016.10.044_bib96) 2011; 39
Zhang (10.1016/j.cell.2016.10.044_bib227) 2011; 29
Wang (10.1016/j.cell.2016.10.044_bib205) 2016; 113
Hou (10.1016/j.cell.2016.10.044_bib66) 2013; 110
Long (10.1016/j.cell.2016.10.044_bib112) 2014; 345
Wyvekens (10.1016/j.cell.2016.10.044_bib210) 2015; 26
Polstein (10.1016/j.cell.2016.10.044_bib151) 2015; 25
Shalem (10.1016/j.cell.2016.10.044_bib174) 2015; 16
Hockemeyer (10.1016/j.cell.2016.10.044_bib65) 2016; 18
Vojta (10.1016/j.cell.2016.10.044_bib198) 2016; 44
Paquet (10.1016/j.cell.2016.10.044_bib141) 2016; 533
Biswas (10.1016/j.cell.2016.10.044_bib10) 1992; 174
Esvelt (10.1016/j.cell.2016.10.044_bib38) 2014; 3
Hwang (10.1016/j.cell.2016.10.044_bib72) 2013; 31
Porteus (10.1016/j.cell.2016.10.044_bib152) 2003; 300
Cockrell (10.1016/j.cell.2016.10.044_bib27) 2007; 36
Guilinger (10.1016/j.cell.2016.10.044_bib54) 2014; 11
Schumann (10.1016/j.cell.2016.10.044_bib171) 2015; 112
Gantz (10.1016/j.cell.2016.10.044_bib44) 2015; 348
Cheng (10.1016/j.cell.2016.10.044_bib23) 2014; 588
Gaj (10.1016/j.cell.2016.10.044_bib43) 2013; 31
Fonfara (10.1016/j.cell.2016.10.044_bib39) 2016; 532
Dow (10.1016/j.cell.2016.10.044_bib36) 2015; 33
Fu (10.1016/j.cell.2016.10.044_bib42) 2014; 32
Suda (10.1016/j.cell.2016.10.044_bib182) 2007; 15
Doudna (10.1016/j.cell.2016.10.044_bib35) 2014; 346
Guilinger (10.1016/j.cell.2016.10.044_bib55) 2014; 32
Shalem (10.1016/j.cell.2016.10.044_bib173) 2014; 343
Jinek (10.1016/j.cell.2016.10.044_bib79) 2013; 2
Grizot (10.1016/j.cell.2016.10.044_bib53) 2009; 37
Ding (10.1016/j.cell.2016.10.044_bib34) 2014; 115
Chakraborty (10.1016/j.cell.2016.10.044_bib16) 2014; 3
Maddalo (10.1016/j.cell.2016.10.044_bib116) 2014; 516
Mou (10.1016/j.cell.2016.10.044_bib128) 2015; 7
Yang (10.1016/j.cell.2016.10.044_bib216) 2014; 5
Cho (10.1016/j.cell.2016.10.044_bib24) 2013; 31
Polstein (10.1016/j.cell.2016.10.044_bib150) 2015; 11
Slaymaker (10.1016/j.cell.2016.10.044_bib176) 2016; 351
Li (10.1016/j.cell.2016.10.044_bib101) 2015; 4
Ran (10.1016/j.cell.2016.10.044_bib158) 2015; 520
Lin (10.1016/j.cell.2016.10.044_bib105) 2014; 3
Ousterout (10.1016/j.cell.2016.10.044_bib139) 2015; 6
Cencic (10.1016/j.cell.2016.10.044_bib15) 2014; 9
Li (10.1016/j.cell.2016.10.044_bib97) 2011; 39
Hammond (10.1016/j.cell.2016.10.044_bib59) 2016; 34
Pinder (10.1016/j.cell.2016.10.044_bib148) 2015; 43
Ran (10.1016/j.cell.2016.10.044_bib157) 2013; 8
Takahashi (10.1016/j.cell.2016.10.044_bib186) 2006; 126
Nishida (10.1016/j.cell.2016.10.044_bib134) 2016; 353
Wang (10.1016/j.cell.2016.10.044_bib200) 2013; 153
Wang (10.1016/j.cell.2016.10.044_bib202) 2014; 9
Gilbert (10.1016/j.cell.2016.10.044_bib49) 2013; 154
Kleinstiver (10.1016/j.cell.2016.10.044_bib87) 2015; 33
Findlay (10.1016/j.cell.2016.10.044_bib233) 2014; 513
Carroll (10.1016/j.cell.2016.10.044_bib14) 2008; 15
Miyaoka (10.1016/j.cell.2016.10.044_bib125) 2016; 6
Zhang (10.1016/j.cell.2016.10.044_bib228) 2014; 4
Ding (10.1016/j.cell.2016.10.044_bib33) 2013; 12
Kleinstiver (10.1016/j.cell.2016.10.044_bib90) 2016; 34
Mandegar (10.1016/j.cell.2016.10.044_bib120) 2016; 18
Hwang (10.1016/j.cell.2016.10.044_bib71) 2013; 8
Cong (10.1016/j.cell.2016.10.044_bib28) 2013; 339
Wang (10.1016/j.cell.2016.10.044_bib201) 2014; 343
Chavez (10.1016/j.cell.2016.10.044_bib19) 2016; 13
Joung (10.1016/j.cell.2016.10.044_bib80) 2013; 14
Rudin (10.1016/j.cell.2016.10.044_bib164) 1989; 122
Liao (10.1016/j.cell.2016.10.044_bib103) 2015; 47
Hirano (10.1016/j.cell.2016.10.044_bib64) 2016; 164
Li (10.1016/j.cell.2016.10.044_bib100) 2015; 96
Pattanayak (10.1016/j.cell.2016.10.044_bib144) 2011; 8
Gori (10.1016/j.cell.2016.10.044_bib52) 2015; 26
Chang (10.1016/j.cell.2016.10.044_bib17) 2013; 23
Tsai (10.1016/j.cell.2016.10.044_bib192) 2016; 17
Oakes (10.1016/j.cell.2016.10.044_bib137) 2016; 34
Mironov (10.1016/j.cell.2016.10.044_bib124) 2004; 4
Smith (10.1016/j.cell.2016.10.044_bib178) 2015; 23
Morita (10.1016/j.cell.2016.10.044_bib126) 2016; 34
Truong (10.1016/j.cell.2016.10.044_bib191) 2015; 43
Richardson (10.1016/j.cell.2016.10.044_bib159) 2016; 34
Gilbert (10.1016/j.cell.2016.10.044_bib50) 2014; 159
Yu (10.1016/j.cell.2016.10.044_bib221) 2007; 318
Yu (10.1016/j.cell.2016.10.044_bib222) 2015; 16
Jiang (10.1016/j.cell.2016.10.044_bib77) 2016; 351
Jain (10.1016/j.cell.2016.10.044_bib73) 2016; 55
Wright (10.1016/j.cell.2016.10.044_bib206) 2015; 112
Kleinstiver (10.1016/j.cell.2016.10.044_bib88) 2015; 523
Schwank (10.1016/j.cell.2016.10.044_bib172) 2013; 13
Jinek (10.1016/j.cell.2016.10.044_bib78) 2012; 337
Xie (10.1016/j.cell.2016.10.044_bib211) 2014; 24
Bibikova (10.1016/j.cell.2016.10.044_bib9) 2003; 300
Müller (10.1016/j.cell.2016.10.044_bib129) 2016; 24
Heckl (10.1016/j.cell.2016.10.044_bib60) 2014; 32
Jiang (10.1016/j.cell.2016.10.044_bib76) 2013; 31
Ramakrishna (10.1016/j.cell.2016.10.044_bib154) 2014; 24
Veres (10.1016/j.cell.2016.10.044_bib197) 2014; 15
O’Geen (10.1016/j.cell.2016.10.044_bib136) 2015; 43
Nelson (10.1016/j.cell.2016.10.044_bib131) 2016; 351
Kim (10.1016/j.cell.2016.10.044_bib84) 2014; 24
Parnas (10.1016/j.cell.2016.10.044_bib143) 2015; 162
González (10.1016/j.cell.2016.10.044_bib51) 2014; 15
Byrne (10.1016/j.cell.2016.10.044_bib12) 2014; 546
Crosetto (10.1016/j.cell.2016.10.044_bib29) 2013; 10
Zeitelhofer (10.1016/j.cell.2016.10.044_bib224) 2007; 2
Oye (10.1016/j.cell.2016.10.044_bib140) 2014; 345
Wang (10.1016/j.cell.2016.10.044_bib204) 2015; 6
Zetsche (10.1016/j.cell.2016.10.044_bib225) 2015; 163
Hsu (10.1016/j.cell.2016.10.044_bib70) 2014; 157
Ran (10.1016/j.cell.2016.10.044_bib156) 2013; 154
Keung (10.1016/j.cell.2016.10.044_bib82) 2015; 16
Hou (10.1016/j.cell.2016.10.044_bib67) 2015; 5
Chu (10.1016/j.cell.2016.10.044_bib26) 2015; 33
Wu (10.1016/j.cell.2016.10.044_bib208) 2013; 13
Thakore (10.1016/j.cell.2016.10.044_bib188) 2015; 12
Chen (10.1016/j.cell.2016.10.044_bib21) 2015; 17
Mali (10.1016/j.cell.2016.10.044_bib118) 2013; 31
Sánchez-Rivera (10.1016/j.cell.2016.10.044_bib166) 2014; 516
Friedland (10.1016/j.cell.2016.10.044_bib40) 2015; 16
Perez-Pinera (10.1016/j.cell.2016.10.044_bib147) 2013; 10
Jasin (10.1016/j.cell.2016.10.044_bib74) 1996; 12
Robert (10.1016/j.cell.2016.10.044_bib160) 2015; 7
Boch (10.1016/j.cell.2016.10.044_bib11) 2009; 326
Pattanayak (10.1016/j.cell.2016.10.044_bib145) 2013; 31
Urnov (10.1016/j.cell.2016.10.044_bib195) 2010; 11
Rosen (10.1016/j.cell.2016.10.044_bib162) 2006; 34
Osborn (10.1016/j.cell.2016.10.044_bib138) 2015; 26
Bartus (10.1016/j.cell.2016.10.044_bib6) 1998; 281
Yang (10.1016/j.cell.2016.10.044_bib214) 2013; 154
Yin (10.1016/j.cell.2016.10.044_bib220) 2016; 34
Thomas (10.1016/j.cell.2016.10.044_bib190) 1986; 44
al Yacoub (10.1016/j.cell.2016.10.044_bib1) 2007; 9
Komor (10.1016/j.cell.2016.10.044_bib91) 2016; 533
Amsellem (10
28431253 - Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005.
References_xml – volume: 13
  start-page: 653
  year: 2013
  end-page: 658
  ident: bib172
  article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
  publication-title: Cell Stem Cell
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  ident: bib221
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
– volume: 31
  start-page: 681
  year: 2013
  end-page: 683
  ident: bib98
  article-title: Heritable gene targeting in the mouse and rat using a CRISPR-Cas system
  publication-title: Nat. Biotechnol.
– volume: 34
  start-page: 328
  year: 2016
  end-page: 333
  ident: bib220
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 563
  year: 2016
  end-page: 567
  ident: bib19
  article-title: Comparison of Cas9 activators in multiple species
  publication-title: Nat. Methods
– volume: 10
  start-page: 361
  year: 2013
  end-page: 365
  ident: bib29
  article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
  publication-title: Nat. Methods
– volume: 36
  start-page: 184
  year: 2007
  end-page: 204
  ident: bib27
  article-title: Gene delivery by lentivirus vectors
  publication-title: Mol. Biotechnol.
– volume: 6
  start-page: 55
  year: 2015
  ident: bib204
  article-title: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment
  publication-title: Mol. Autism
– volume: 281
  start-page: 1161
  year: 1998
  end-page: 1162
  ident: bib6
  article-title: Sustained delivery of proteins for novel therapeutic agents
  publication-title: Science
– volume: 300
  start-page: 764
  year: 2003
  ident: bib9
  article-title: Enhancing gene targeting with designed zinc finger nucleases
  publication-title: Science
– volume: 31
  start-page: 397
  year: 2013
  end-page: 405
  ident: bib43
  article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
  publication-title: Trends Biotechnol.
– volume: 9
  start-page: e109213
  year: 2014
  ident: bib15
  article-title: Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
  publication-title: PLoS ONE
– volume: 5
  start-page: 258
  year: 2014
  end-page: 260
  ident: bib161
  article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
  publication-title: Protein Cell
– volume: 244
  start-page: 1288
  year: 1989
  end-page: 1292
  ident: bib13
  article-title: Altering the genome by homologous recombination
  publication-title: Science
– volume: 12
  start-page: 224
  year: 1996
  end-page: 228
  ident: bib74
  article-title: Genetic manipulation of genomes with rare-cutting endonucleases
  publication-title: Trends Genet.
– volume: 15
  start-page: 215
  year: 2014
  end-page: 226
  ident: bib51
  article-title: An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 32
  start-page: 279
  year: 2014
  end-page: 284
  ident: bib42
  article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
  publication-title: Nat. Biotechnol.
– volume: 546
  start-page: 119
  year: 2014
  end-page: 138
  ident: bib12
  article-title: Genome editing in human stem cells
  publication-title: Methods Enzymol.
– volume: 33
  start-page: 543
  year: 2015
  end-page: 548
  ident: bib26
  article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 16
  start-page: 159
  year: 2015
  end-page: 171
  ident: bib82
  article-title: Chromatin regulation at the frontier of synthetic biology
  publication-title: Nat. Rev. Genet.
– volume: 159
  start-page: 440
  year: 2014
  end-page: 455
  ident: bib149
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
– volume: 13
  start-page: 127
  year: 2016
  end-page: 137
  ident: bib189
  article-title: Editing the epigenome: technologies for programmable transcription and epigenetic modulation
  publication-title: Nat. Methods
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: bib91
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 17
  start-page: 300
  year: 2016
  end-page: 312
  ident: bib192
  article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
  publication-title: Nat. Rev. Genet.
– volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  ident: bib156
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
– volume: 12
  start-page: 237
  year: 2015
  end-page: 243
  ident: bib85
  article-title: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
  publication-title: Nat. Methods
– volume: 190
  start-page: 1390
  year: 2008
  end-page: 1400
  ident: bib32
  article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
  publication-title: J. Bacteriol.
– volume: 3
  start-page: e186
  year: 2014
  ident: bib105
  article-title: The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo
  publication-title: Mol. Ther. Nucleic Acids
– volume: 26
  start-page: 425
  year: 2015
  end-page: 431
  ident: bib210
  article-title: Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing
  publication-title: Hum. Gene Ther.
– volume: 32
  start-page: 577
  year: 2014
  end-page: 582
  ident: bib55
  article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
  publication-title: Nat. Biotechnol.
– volume: 44
  start-page: 113
  year: 2010
  end-page: 139
  ident: bib62
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
– volume: 2
  start-page: 1692
  year: 2007
  end-page: 1704
  ident: bib224
  article-title: High-efficiency transfection of mammalian neurons via nucleofection
  publication-title: Nat. Protoc.
– volume: 12
  start-page: 1893
  year: 2001
  end-page: 1905
  ident: bib93
  article-title: Systematic determination of the packaging limit of lentiviral vectors
  publication-title: Hum. Gene Ther.
– volume: 167
  start-page: 233
  year: 2016
  end-page: 247
  ident: bib109
  article-title: Editing DNA methylation in the mammalian genome
  publication-title: Cell
– volume: 10
  start-page: 977
  year: 2013
  end-page: 979
  ident: bib117
  article-title: CRISPR RNA-guided activation of endogenous human genes
  publication-title: Nat. Methods
– volume: 29
  start-page: 143
  year: 2011
  end-page: 148
  ident: bib123
  article-title: A TALE nuclease architecture for efficient genome editing
  publication-title: Nat. Biotechnol.
– volume: 51
  start-page: 835
  year: 2013
  end-page: 843
  ident: bib130
  article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis
  publication-title: Genesis
– volume: 5
  start-page: 10833
  year: 2015
  ident: bib155
  article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus
  publication-title: Sci. Rep.
– volume: 351
  start-page: 407
  year: 2016
  end-page: 411
  ident: bib185
  article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells
  publication-title: Science
– volume: 43
  start-page: 6450
  year: 2015
  end-page: 6458
  ident: bib191
  article-title: Development of an intein-mediated split-Cas9 system for gene therapy
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 143
  year: 2015
  end-page: 154
  ident: bib101
  article-title: Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9
  publication-title: Stem Cell Reports
– volume: 9
  start-page: 1423
  year: 2003
  end-page: 1427
  ident: bib2
  article-title: Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein
  publication-title: Nat. Med.
– volume: 24
  start-page: 636
  year: 2016
  end-page: 644
  ident: bib129
  article-title: Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome
  publication-title: Mol. Ther.
– volume: 18
  start-page: 33
  year: 2000
  end-page: 37
  ident: bib114
  article-title: Synthetic DNA delivery systems
  publication-title: Nat. Biotechnol.
– volume: 34
  start-page: 863
  year: 2016
  end-page: 868
  ident: bib86
  article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
  publication-title: Nat. Biotechnol.
– volume: 110
  start-page: 15644
  year: 2013
  end-page: 15649
  ident: bib66
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 636
  year: 2010
  end-page: 646
  ident: bib195
  article-title: Genome editing with engineered zinc finger nucleases
  publication-title: Nat. Rev. Genet.
– volume: 326
  start-page: 1509
  year: 2009
  end-page: 1512
  ident: bib11
  article-title: Breaking the code of DNA binding specificity of TAL-type III effectors
  publication-title: Science
– volume: 24
  start-page: 372
  year: 2014
  end-page: 375
  ident: bib58
  article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system
  publication-title: Cell Res.
– volume: 326
  start-page: 1501
  year: 2009
  ident: bib127
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
– volume: 140
  start-page: 4982
  year: 2013
  end-page: 4987
  ident: bib68
  article-title: Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish
  publication-title: Development
– volume: 34
  start-page: 78
  year: 2016
  end-page: 83
  ident: bib59
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
– volume: 31
  start-page: 822
  year: 2013
  end-page: 826
  ident: bib41
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 23549
  year: 2016
  ident: bib125
  article-title: Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing
  publication-title: Sci. Rep.
– volume: 154
  start-page: 442
  year: 2013
  end-page: 451
  ident: bib49
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
– volume: 284
  start-page: 133
  year: 2004
  end-page: 140
  ident: bib115
  article-title: Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system
  publication-title: J. Immunol. Methods
– volume: 4
  start-page: 220
  year: 2013
  end-page: 228
  ident: bib7
  article-title: Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
  publication-title: Cell Rep.
– volume: 4
  start-page: 773
  year: 2004
  end-page: 781
  ident: bib124
  article-title: What is regenerative medicine? Emergence of applied stem cell and developmental biology
  publication-title: Expert Opin. Biol. Ther.
– volume: 26
  start-page: 432
  year: 2015
  end-page: 442
  ident: bib203
  article-title: Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses
  publication-title: Hum. Gene Ther.
– volume: 33
  start-page: 139
  year: 2015
  end-page: 142
  ident: bib226
  article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation
  publication-title: Nat. Biotechnol.
– volume: 39
  start-page: 381
  year: 2011
  end-page: 392
  ident: bib56
  article-title: Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases
  publication-title: Nucleic Acids Res.
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: bib118
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 156
  start-page: 836
  year: 2014
  end-page: 843
  ident: bib135
  article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
  publication-title: Cell
– volume: 10
  start-page: 973
  year: 2013
  end-page: 976
  ident: bib147
  article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors
  publication-title: Nat. Methods
– volume: 43
  start-page: 9379
  year: 2015
  end-page: 9392
  ident: bib148
  article-title: Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing
  publication-title: Nucleic Acids Res.
– year: 2016
  ident: bib168
  article-title: Genome-scale CRISPR pooled screens
  publication-title: Anal. Biochem.
– volume: 31
  start-page: 3676
  year: 2015
  end-page: 3678
  ident: bib107
  article-title: CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation
  publication-title: Bioinformatics
– volume: 517
  start-page: 583
  year: 2015
  end-page: 588
  ident: bib92
  article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
  publication-title: Nature
– volume: 13
  start-page: 659
  year: 2013
  end-page: 662
  ident: bib208
  article-title: Correction of a genetic disease in mouse via use of CRISPR-Cas9
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 27
  year: 2014
  end-page: 30
  ident: bib197
  article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 213
  year: 2015
  end-page: 220
  ident: bib142
  article-title: Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9
  publication-title: Cell Stem Cell
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: bib134
  article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
  publication-title: Science
– volume: 9
  start-page: 579
  year: 2007
  end-page: 584
  ident: bib1
  article-title: Optimized production and concentration of lentiviral vectors containing large inserts
  publication-title: J. Gene Med.
– volume: 513
  start-page: 120
  year: 2014
  end-page: 123
  ident: bib233
  article-title: Saturation editing of genomic regions by multiplex homology-directed repair
  publication-title: Nature
– volume: 82
  start-page: 1391
  year: 1985
  end-page: 1395
  ident: bib104
  article-title: Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 588
  start-page: 3954
  year: 2014
  end-page: 3958
  ident: bib23
  article-title: Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9
  publication-title: FEBS Lett.
– volume: 25
  start-page: 1158
  year: 2015
  end-page: 1169
  ident: bib151
  article-title: Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators
  publication-title: Genome Res.
– volume: 348
  start-page: 442
  year: 2015
  end-page: 444
  ident: bib44
  article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
  publication-title: Science
– volume: 208
  start-page: 44
  year: 2015
  end-page: 53
  ident: bib102
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
– volume: 34
  start-page: 334
  year: 2016
  end-page: 338
  ident: bib217
  article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
  publication-title: Nat. Biotechnol.
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib78
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 60
  start-page: 242
  year: 2015
  end-page: 255
  ident: bib229
  article-title: DNase H Activity of Neisseria meningitidis Cas9
  publication-title: Mol. Cell
– volume: 11
  start-page: 429
  year: 2014
  end-page: 435
  ident: bib54
  article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
  publication-title: Nat. Methods
– volume: 33
  start-page: 538
  year: 2015
  end-page: 542
  ident: bib121
  article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
  publication-title: Nat. Biotechnol.
– volume: 18
  start-page: 80
  year: 2010
  end-page: 86
  ident: bib207
  article-title: Effect of genome size on AAV vector packaging
  publication-title: Mol. Ther.
– volume: 39
  start-page: 359
  year: 2011
  end-page: 372
  ident: bib96
  article-title: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 595
  year: 1993
  end-page: 600
  ident: bib146
  article-title: The RNA binding site of bacteriophage MS2 coat protein
  publication-title: EMBO J.
– volume: 112
  start-page: E6736
  year: 2015
  end-page: E6743
  ident: bib45
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 233
  year: 2013
  end-page: 239
  ident: bib76
  article-title: RNA-guided editing of bacterial genomes using CRISPR-Cas systems
  publication-title: Nat. Biotechnol.
– volume: 41
  start-page: 9049
  year: 2013
  end-page: 9061
  ident: bib215
  article-title: Optimization of scarless human stem cell genome editing
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: e115987
  year: 2014
  ident: bib202
  article-title: CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection
  publication-title: PLoS ONE
– volume: 5
  start-page: 5507
  year: 2014
  ident: bib216
  article-title: Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells
  publication-title: Nat. Commun.
– volume: 21
  start-page: 562
  year: 2013
  end-page: 567
  ident: bib47
  article-title: RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
  publication-title: Trends Microbiol.
– volume: 32
  start-page: 670
  year: 2014
  end-page: 676
  ident: bib209
  article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 1298
  year: 2007
  end-page: 1306
  ident: bib111
  article-title: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery
  publication-title: Nat. Biotechnol.
– volume: 153
  start-page: 910
  year: 2013
  end-page: 918
  ident: bib200
  article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib119
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 33
  start-page: 755
  year: 2015
  end-page: 760
  ident: bib132
  article-title: Photoactivatable CRISPR-Cas9 for optogenetic genome editing
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 393
  year: 2013
  end-page: 394
  ident: bib33
  article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs
  publication-title: Cell Stem Cell
– volume: 3
  start-page: e03401
  year: 2014
  ident: bib38
  article-title: Concerning RNA-guided gene drives for the alteration of wild populations
  publication-title: eLife
– volume: 163
  start-page: 759
  year: 2015
  end-page: 771
  ident: bib225
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
– volume: 23
  start-page: 465
  year: 2013
  end-page: 472
  ident: bib17
  article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
  publication-title: Cell Res.
– volume: 31
  start-page: 684
  year: 2013
  end-page: 686
  ident: bib99
  article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems
  publication-title: Nat. Biotechnol.
– volume: 34
  start-page: 4791
  year: 2006
  end-page: 4800
  ident: bib162
  article-title: Homing endonuclease I-CreI derivatives with novel DNA target specificities
  publication-title: Nucleic Acids Res.
– volume: 160
  start-page: 339
  year: 2015
  end-page: 350
  ident: bib223
  article-title: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
  publication-title: Cell
– volume: 32
  start-page: 347
  year: 2014
  end-page: 355
  ident: bib167
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
– volume: 2
  start-page: e00471
  year: 2013
  ident: bib79
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
– volume: 516
  start-page: 423
  year: 2014
  end-page: 427
  ident: bib116
  article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
  publication-title: Nature
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: bib158
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
– volume: 12
  start-page: 1143
  year: 2015
  end-page: 1149
  ident: bib188
  article-title: Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
  publication-title: Nat. Methods
– volume: 10
  start-page: 1842
  year: 2015
  end-page: 1859
  ident: bib108
  article-title: Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
  publication-title: Nat. Protoc.
– volume: 351
  start-page: 403
  year: 2016
  end-page: 407
  ident: bib131
  article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
  publication-title: Science
– volume: 348
  start-page: 36
  year: 2015
  end-page: 38
  ident: bib4
  article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification
  publication-title: Science
– volume: 113
  start-page: 2868
  year: 2016
  end-page: 2873
  ident: bib205
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: e60
  year: 2005
  ident: bib57
  article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
  publication-title: PLoS Comput. Biol.
– volume: 39
  start-page: 6315
  year: 2011
  end-page: 6325
  ident: bib97
  article-title: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes
  publication-title: Nucleic Acids Res.
– volume: 115
  start-page: 488
  year: 2014
  end-page: 492
  ident: bib34
  article-title: Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing
  publication-title: Circ. Res.
– volume: 15
  start-page: 1968
  year: 1995
  end-page: 1973
  ident: bib25
  article-title: Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
– volume: 112
  start-page: 10437
  year: 2015
  end-page: 10442
  ident: bib171
  article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 661
  year: 2015
  end-page: 667
  ident: bib175
  article-title: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
  publication-title: Nat. Biotechnol.
– volume: 16
  start-page: 299
  year: 2015
  end-page: 311
  ident: bib174
  article-title: High-throughput functional genomics using CRISPR-Cas9
  publication-title: Nat. Rev. Genet.
– volume: 300
  start-page: 763
  year: 2003
  ident: bib152
  article-title: Chimeric nucleases stimulate gene targeting in human cells
  publication-title: Science
– volume: 342
  start-page: 31
  year: 2004
  end-page: 41
  ident: bib183
  article-title: Isolation and characterization of new homing endonuclease specificities at individual target site positions
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 93
  year: 2015
  ident: bib160
  article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing
  publication-title: Genome Med.
– volume: 33
  start-page: 1293
  year: 2015
  end-page: 1298
  ident: bib87
  article-title: Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 1012
  year: 2014
  end-page: 1019
  ident: bib84
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
– volume: 529
  start-page: 490
  year: 2016
  end-page: 495
  ident: bib89
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
– volume: 34
  start-page: 1060
  year: 2016
  end-page: 1065
  ident: bib126
  article-title: Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions
  publication-title: Nat. Biotechnol.
– volume: 23
  start-page: 570
  year: 2015
  end-page: 577
  ident: bib178
  article-title: Efficient and allele-specific genome editing of disease loci in human iPSCs
  publication-title: Mol. Ther.
– volume: 15
  start-page: 541
  year: 2014
  end-page: 555
  ident: bib218
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
– volume: 33
  start-page: 187
  year: 2015
  end-page: 197
  ident: bib194
  article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: e68708
  year: 2013
  ident: bib71
  article-title: Heritable and precise zebrafish genome editing using a CRISPR-Cas system
  publication-title: PLoS ONE
– volume: 160
  start-page: 1246
  year: 2015
  end-page: 1260
  ident: bib20
  article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
  publication-title: Cell
– volume: 26
  start-page: 114
  year: 2015
  end-page: 126
  ident: bib138
  article-title: Fanconi anemia gene editing by the CRISPR/Cas9 system
  publication-title: Hum. Gene Ther.
– volume: 37
  start-page: 5405
  year: 2009
  end-page: 5419
  ident: bib53
  article-title: Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 198
  year: 2015
  end-page: 200
  ident: bib150
  article-title: A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
  publication-title: Nat. Chem. Biol.
– volume: 15
  start-page: 1463
  year: 2008
  end-page: 1468
  ident: bib14
  article-title: Progress and prospects: zinc-finger nucleases as gene therapy agents
  publication-title: Gene Ther.
– volume: 12
  start-page: 326
  year: 2015
  end-page: 328
  ident: bib18
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib28
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 195
  start-page: 331
  year: 2013
  end-page: 348
  ident: bib110
  article-title: Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions
  publication-title: Genetics
– volume: 16
  start-page: 257
  year: 2015
  ident: bib40
  article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
  publication-title: Genome Biol.
– volume: 33
  start-page: 73
  year: 2015
  end-page: 80
  ident: bib232
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bib157
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 157
  start-page: 1262
  year: 2014
  end-page: 1278
  ident: bib70
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
– volume: 18
  start-page: 573
  year: 2016
  end-page: 586
  ident: bib65
  article-title: Induced pluripotent stem cells meet genome editing
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 405
  year: 2004
  end-page: 413
  ident: bib199
  article-title: Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo
  publication-title: Hum. Gene Ther.
– volume: 33
  start-page: 390
  year: 2015
  end-page: 394
  ident: bib36
  article-title: Inducible in vivo genome editing with CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 677
  year: 2014
  end-page: 683
  ident: bib94
  article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
  publication-title: Nat. Biotechnol.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib186
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 3
  start-page: 940
  year: 2014
  end-page: 947
  ident: bib16
  article-title: A CRISPR/Cas9-based system for reprogramming cell lineage specification
  publication-title: Stem Cell Reports
– volume: 7
  start-page: 10548
  year: 2016
  ident: bib180
  article-title: RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency
  publication-title: Nat. Commun.
– volume: 3
  start-page: e04766
  year: 2014
  ident: bib106
  article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
  publication-title: eLife
– volume: 34
  start-page: 339
  year: 2016
  end-page: 344
  ident: bib159
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: 8096
  year: 1994
  end-page: 8106
  ident: bib163
  article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
  publication-title: Mol. Cell. Biol.
– volume: 351
  start-page: 84
  year: 2016
  end-page: 88
  ident: bib176
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science
– volume: 39
  start-page: 9275
  year: 2011
  end-page: 9282
  ident: bib170
  article-title: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
  publication-title: Nucleic Acids Res.
– volume: 112
  start-page: 2984
  year: 2015
  end-page: 2989
  ident: bib206
  article-title: Rational design of a split-Cas9 enzyme complex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 12
  year: 2014
  end-page: 13
  ident: bib177
  article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 5405
  year: 2014
  ident: bib228
  article-title: Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells
  publication-title: Sci. Rep.
– volume: 22
  start-page: 169
  year: 2015
  end-page: 174
  ident: bib133
  article-title: CRISPR-Cas9-based photoactivatable transcription system
  publication-title: Chem. Biol.
– volume: 31
  start-page: 839
  year: 2013
  end-page: 843
  ident: bib145
  article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 569
  year: 2014
  end-page: 576
  ident: bib193
  article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: 49
  year: 2013
  end-page: 55
  ident: bib80
  article-title: TALENs: a widely applicable technology for targeted genome editing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 24
  start-page: 142
  year: 2014
  end-page: 153
  ident: bib3
  article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair
  publication-title: Genome Res.
– volume: 162
  start-page: 675
  year: 2015
  end-page: 686
  ident: bib143
  article-title: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks
  publication-title: Cell
– volume: 33
  start-page: 510
  year: 2015
  end-page: 517
  ident: bib63
  article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
  publication-title: Nat. Biotechnol.
– volume: 471
  start-page: 602
  year: 2011
  end-page: 607
  ident: bib31
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
– volume: 509
  start-page: 487
  year: 2014
  end-page: 491
  ident: bib231
  article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
  publication-title: Nature
– volume: 31
  start-page: 227
  year: 2013
  end-page: 229
  ident: bib72
  article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system
  publication-title: Nat. Biotechnol.
– volume: 18
  start-page: 541
  year: 2016
  end-page: 553
  ident: bib120
  article-title: CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
  publication-title: Cell Stem Cell
– volume: 9
  start-page: e113232
  year: 2014
  ident: bib95
  article-title: Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53
  publication-title: PLoS ONE
– volume: 164
  start-page: 950
  year: 2016
  end-page: 961
  ident: bib64
  article-title: Structure and engineering of francisella novicida Cas9
  publication-title: Cell
– volume: 6
  start-page: 6244
  year: 2015
  ident: bib139
  article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
  publication-title: Nat. Commun.
– volume: 174
  start-page: 5593
  year: 1992
  end-page: 5596
  ident: bib10
  article-title: Efficiency of homologous intermolecular recombination at different locations on the Bacillus subtilis chromosome
  publication-title: J. Bacteriol.
– volume: 161
  start-page: 1169
  year: 2002
  end-page: 1175
  ident: bib8
  article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
  publication-title: Genetics
– volume: 44
  start-page: 419
  year: 1986
  end-page: 428
  ident: bib190
  article-title: High frequency targeting of genes to specific sites in the mammalian genome
  publication-title: Cell
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  ident: bib5
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
– volume: 351
  start-page: 867
  year: 2016
  end-page: 871
  ident: bib77
  article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
  publication-title: Science
– volume: 151
  start-page: 1474
  year: 2012
  end-page: 1487
  ident: bib181
  article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression
  publication-title: Cell
– volume: 533
  start-page: 125
  year: 2016
  end-page: 129
  ident: bib141
  article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
  publication-title: Nature
– volume: 11
  start-page: 783
  year: 2014
  end-page: 784
  ident: bib169
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
– volume: 96
  start-page: 2381
  year: 2015
  end-page: 2393
  ident: bib100
  article-title: Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9
  publication-title: J. Gen. Virol.
– volume: 2
  start-page: 16009
  year: 2016
  ident: bib212
  article-title: A CRISPR-based approach for targeted DNA demethylation
  publication-title: Cell Discov.
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: bib48
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 827
  year: 2013
  end-page: 832
  ident: bib69
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 1116
  year: 2013
  end-page: 1121
  ident: bib37
  article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
  publication-title: Nat. Methods
– volume: 17
  start-page: 233
  year: 2015
  end-page: 244
  ident: bib21
  article-title: Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9
  publication-title: Cell Stem Cell
– volume: 345
  start-page: 1184
  year: 2014
  end-page: 1188
  ident: bib112
  article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
  publication-title: Science
– volume: 24
  start-page: 1020
  year: 2014
  end-page: 1027
  ident: bib154
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
– volume: 43
  start-page: 3389
  year: 2015
  end-page: 3404
  ident: bib136
  article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
  publication-title: Nucleic Acids Res.
– volume: 345
  start-page: 626
  year: 2014
  end-page: 628
  ident: bib140
  article-title: Biotechnology. Regulating gene drives
  publication-title: Science
– volume: 22
  start-page: 404
  year: 2015
  end-page: 412
  ident: bib230
  article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
  publication-title: Gene Ther.
– volume: 159
  start-page: 635
  year: 2014
  end-page: 646
  ident: bib187
  article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging
  publication-title: Cell
– volume: 343
  start-page: 80
  year: 2014
  end-page: 84
  ident: bib201
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science
– volume: 346
  start-page: 1258096
  year: 2014
  ident: bib35
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
– volume: 15
  start-page: 2063
  year: 2007
  end-page: 2069
  ident: bib182
  article-title: Hydrodynamic gene delivery: its principles and applications
  publication-title: Mol. Ther.
– volume: 44
  start-page: 5615
  year: 2016
  end-page: 5628
  ident: bib198
  article-title: Repurposing the CRISPR-Cas9 system for targeted DNA methylation
  publication-title: Nucleic Acids Res.
– volume: 122
  start-page: 519
  year: 1989
  end-page: 534
  ident: bib164
  article-title: Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 32
  start-page: 551
  year: 2014
  end-page: 553
  ident: bib219
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat. Biotechnol.
– volume: 282
  start-page: 4289
  year: 2015
  end-page: 4294
  ident: bib196
  article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing
  publication-title: FEBS J.
– volume: 24
  start-page: 1526
  year: 2014
  end-page: 1533
  ident: bib211
  article-title: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac
  publication-title: Genome Res.
– volume: 351
  start-page: 400
  year: 2016
  end-page: 403
  ident: bib113
  article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
  publication-title: Science
– volume: 29
  start-page: 149
  year: 2011
  end-page: 153
  ident: bib227
  article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 3683
  year: 2004
  end-page: 3688
  ident: bib165
  article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 142
  year: 2015
  end-page: 147
  ident: bib222
  article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 866
  year: 2016
  end-page: 874
  ident: bib122
  article-title: Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation
  publication-title: Biol. Open
– volume: 7
  start-page: 53
  year: 2015
  ident: bib128
  article-title: Precision cancer mouse models through genome editing with CRISPR-Cas9
  publication-title: Genome Med.
– volume: 34
  start-page: 869
  year: 2016
  end-page: 874
  ident: bib90
  article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
  publication-title: Nat. Biotechnol.
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib46
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
– volume: 317
  start-page: 230
  year: 1985
  end-page: 234
  ident: bib179
  article-title: Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination
  publication-title: Nature
– volume: 11
  start-page: 316
  year: 2015
  end-page: 318
  ident: bib30
  article-title: Small molecule-triggered Cas9 protein with improved genome-editing specificity
  publication-title: Nat. Chem. Biol.
– volume: 26
  start-page: 443
  year: 2015
  end-page: 451
  ident: bib52
  article-title: Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy
  publication-title: Hum. Gene Ther.
– volume: 8
  start-page: 765
  year: 2011
  end-page: 770
  ident: bib144
  article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
  publication-title: Nat. Methods
– volume: 38
  start-page: 185
  year: 1998
  end-page: 218
  ident: bib75
  article-title: DNA breakage and repair
  publication-title: Adv. Genet.
– volume: 12
  start-page: 401
  year: 2015
  end-page: 403
  ident: bib81
  article-title: Functional annotation of native enhancers with a Cas9-histone demethylase fusion
  publication-title: Nat. Methods
– volume: 47
  start-page: 469
  year: 2015
  end-page: 478
  ident: bib103
  article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
  publication-title: Nat. Genet.
– volume: 23
  start-page: 1163
  year: 2013
  end-page: 1171
  ident: bib22
  article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
  publication-title: Cell Res.
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: bib173
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
– volume: 523
  start-page: 481
  year: 2015
  end-page: 485
  ident: bib88
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
– volume: 33
  start-page: 102
  year: 2015
  end-page: 106
  ident: bib184
  article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 516
  start-page: 428
  year: 2014
  end-page: 431
  ident: bib166
  article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing
  publication-title: Nature
– volume: 5
  start-page: 15577
  year: 2015
  ident: bib67
  article-title: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection
  publication-title: Sci. Rep.
– volume: 137
  start-page: 5642
  year: 2015
  end-page: 5645
  ident: bib61
  article-title: Optical Control of CRISPR/Cas9 Gene Editing
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 12440
  year: 2016
  end-page: 12444
  ident: bib73
  article-title: Development of light-activated CRISPR using guide RNAs with photocleavable protectors
  publication-title: Angewandte Chemie International Edition
– volume: 159
  start-page: 647
  year: 2014
  end-page: 661
  ident: bib50
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
– volume: 31
  start-page: 230
  year: 2013
  end-page: 232
  ident: bib24
  article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
  publication-title: Nat. Biotechnol.
– volume: 514
  start-page: 380
  year: 2014
  end-page: 384
  ident: bib213
  article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver
  publication-title: Nature
– volume: 154
  start-page: 1370
  year: 2013
  end-page: 1379
  ident: bib214
  article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
– volume: 532
  start-page: 517
  year: 2016
  end-page: 521
  ident: bib39
  article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
  publication-title: Nature
– volume: 34
  start-page: 646
  year: 2016
  end-page: 651
  ident: bib137
  article-title: Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 941
  year: 2014
  end-page: 946
  ident: bib60
  article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing
  publication-title: Nat. Biotechnol.
– volume: 152
  start-page: 1173
  year: 2013
  end-page: 1183
  ident: bib153
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
– volume: 26
  start-page: 425
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib210
  article-title: Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2015.084
– volume: 162
  start-page: 675
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib143
  article-title: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.059
– volume: 10
  start-page: 361
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib29
  article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2408
– volume: 33
  start-page: 510
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib63
  article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3199
– volume: 300
  start-page: 763
  year: 2003
  ident: 10.1016/j.cell.2016.10.044_bib152
  article-title: Chimeric nucleases stimulate gene targeting in human cells
  publication-title: Science
  doi: 10.1126/science.1078395
– volume: 345
  start-page: 626
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib140
  article-title: Biotechnology. Regulating gene drives
  publication-title: Science
  doi: 10.1126/science.1254287
– volume: 31
  start-page: 233
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib76
  article-title: RNA-guided editing of bacterial genomes using CRISPR-Cas systems
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2508
– volume: 15
  start-page: 1968
  year: 1995
  ident: 10.1016/j.cell.2016.10.044_bib25
  article-title: Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.4.1968
– volume: 24
  start-page: 142
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib3
  article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair
  publication-title: Genome Res.
  doi: 10.1101/gr.161638.113
– volume: 154
  start-page: 1370
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib214
  article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.022
– volume: 174
  start-page: 5593
  year: 1992
  ident: 10.1016/j.cell.2016.10.044_bib10
  article-title: Efficiency of homologous intermolecular recombination at different locations on the Bacillus subtilis chromosome
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.17.5593-5596.1992
– volume: 31
  start-page: 833
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib118
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib28
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 36
  start-page: 184
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib27
  article-title: Gene delivery by lentivirus vectors
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-007-0010-8
– volume: 39
  start-page: 9275
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib170
  article-title: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr606
– volume: 29
  start-page: 149
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib227
  article-title: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1775
– volume: 7
  start-page: 10548
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib180
  article-title: RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10548
– volume: 351
  start-page: 407
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib185
  article-title: In vivo gene editing in dystrophic mouse muscle and muscle stem cells
  publication-title: Science
  doi: 10.1126/science.aad5177
– volume: 10
  start-page: 1842
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib108
  article-title: Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.117
– volume: 11
  start-page: 429
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib54
  article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2845
– volume: 5
  start-page: 258
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib161
  article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0032-5
– volume: 348
  start-page: 442
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib44
  article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
  publication-title: Science
  doi: 10.1126/science.aaa5945
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib157
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 156
  start-page: 836
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib135
  article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.027
– volume: 12
  start-page: 326
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib18
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
– volume: 32
  start-page: 551
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib219
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2884
– volume: 348
  start-page: 36
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib4
  article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification
  publication-title: Science
  doi: 10.1126/science.aab1028
– volume: 23
  start-page: 570
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib178
  article-title: Efficient and allele-specific genome editing of disease loci in human iPSCs
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2014.226
– volume: 112
  start-page: 2984
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib206
  article-title: Rational design of a split-Cas9 enzyme complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1501698112
– volume: 468
  start-page: 67
  year: 2010
  ident: 10.1016/j.cell.2016.10.044_bib46
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 15
  start-page: 27
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib197
  article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.04.020
– volume: 4
  start-page: 5405
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib228
  article-title: Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep05405
– volume: 39
  start-page: 381
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib56
  article-title: Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq787
– volume: 112
  start-page: 10437
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib171
  article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1512503112
– volume: 9
  start-page: 579
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib1
  article-title: Optimized production and concentration of lentiviral vectors containing large inserts
  publication-title: J. Gene Med.
  doi: 10.1002/jgm.1052
– volume: 151
  start-page: 1474
  year: 2012
  ident: 10.1016/j.cell.2016.10.044_bib181
  article-title: An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.054
– volume: 12
  start-page: 224
  year: 1996
  ident: 10.1016/j.cell.2016.10.044_bib74
  article-title: Genetic manipulation of genomes with rare-cutting endonucleases
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(96)10019-6
– volume: 38
  start-page: 185
  year: 1998
  ident: 10.1016/j.cell.2016.10.044_bib75
  article-title: DNA breakage and repair
  publication-title: Adv. Genet.
  doi: 10.1016/S0065-2660(08)60144-3
– volume: 55
  start-page: 12440
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib73
  article-title: Development of light-activated CRISPR using guide RNAs with photocleavable protectors
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201606123
– volume: 351
  start-page: 84
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib176
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science
  doi: 10.1126/science.aad5227
– volume: 5
  start-page: 15577
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib67
  article-title: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection
  publication-title: Sci. Rep.
  doi: 10.1038/srep15577
– volume: 9
  start-page: e109213
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib15
  article-title: Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109213
– volume: 34
  start-page: 863
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib86
  article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3609
– volume: 3
  start-page: e04766
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib106
  article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
  publication-title: eLife
  doi: 10.7554/eLife.04766
– volume: 342
  start-page: 31
  year: 2004
  ident: 10.1016/j.cell.2016.10.044_bib183
  article-title: Isolation and characterization of new homing endonuclease specificities at individual target site positions
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.07.031
– volume: 6
  start-page: 55
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib204
  article-title: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment
  publication-title: Mol. Autism
  doi: 10.1186/s13229-015-0048-6
– volume: 16
  start-page: 299
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib174
  article-title: High-throughput functional genomics using CRISPR-Cas9
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3899
– volume: 115
  start-page: 488
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib34
  article-title: Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.304351
– volume: 34
  start-page: 78
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib59
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3439
– volume: 2
  start-page: 16009
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib212
  article-title: A CRISPR-based approach for targeted DNA demethylation
  publication-title: Cell Discov.
  doi: 10.1038/celldisc.2016.9
– volume: 31
  start-page: 684
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib99
  article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2652
– volume: 11
  start-page: 198
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib150
  article-title: A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1753
– volume: 15
  start-page: 541
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib218
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3763
– volume: 282
  start-page: 4289
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib196
  article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing
  publication-title: FEBS J.
  doi: 10.1111/febs.13416
– volume: 471
  start-page: 602
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib31
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
  doi: 10.1038/nature09886
– volume: 8
  start-page: 765
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib144
  article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1670
– volume: 41
  start-page: 9049
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib215
  article-title: Optimization of scarless human stem cell genome editing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt555
– volume: 317
  start-page: 230
  year: 1985
  ident: 10.1016/j.cell.2016.10.044_bib179
  article-title: Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination
  publication-title: Nature
  doi: 10.1038/317230a0
– volume: 15
  start-page: 405
  year: 2004
  ident: 10.1016/j.cell.2016.10.044_bib199
  article-title: Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo
  publication-title: Hum. Gene Ther.
  doi: 10.1089/104303404322959551
– volume: 33
  start-page: 102
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib184
  article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3055
– volume: 6
  start-page: 23549
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib125
  article-title: Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing
  publication-title: Sci. Rep.
  doi: 10.1038/srep23549
– volume: 11
  start-page: 783
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib169
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3047
– volume: 33
  start-page: 755
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib132
  article-title: Photoactivatable CRISPR-Cas9 for optogenetic genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3245
– volume: 523
  start-page: 481
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib88
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
  doi: 10.1038/nature14592
– volume: 22
  start-page: 169
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib133
  article-title: CRISPR-Cas9-based photoactivatable transcription system
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2014.12.011
– volume: 9
  start-page: 1423
  year: 2003
  ident: 10.1016/j.cell.2016.10.044_bib2
  article-title: Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein
  publication-title: Nat. Med.
  doi: 10.1038/nm953
– volume: 9
  start-page: e115987
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib202
  article-title: CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0115987
– volume: 343
  start-page: 84
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib173
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 31
  start-page: 397
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib43
  article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.04.004
– volume: 31
  start-page: 681
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib98
  article-title: Heritable gene targeting in the mouse and rat using a CRISPR-Cas system
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2661
– volume: 82
  start-page: 1391
  year: 1985
  ident: 10.1016/j.cell.2016.10.044_bib104
  article-title: Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.5.1391
– volume: 51
  start-page: 835
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib130
  article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis
  publication-title: Genesis
  doi: 10.1002/dvg.22720
– volume: 34
  start-page: 328
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib220
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
– volume: 18
  start-page: 541
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib120
  article-title: CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.01.022
– volume: 351
  start-page: 400
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib113
  article-title: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aad5725
– volume: 516
  start-page: 428
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib166
  article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing
  publication-title: Nature
  doi: 10.1038/nature13906
– volume: 33
  start-page: 661
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib175
  article-title: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3235
– volume: 161
  start-page: 1169
  year: 2002
  ident: 10.1016/j.cell.2016.10.044_bib8
  article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
  publication-title: Genetics
  doi: 10.1093/genetics/161.3.1169
– volume: 29
  start-page: 143
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib123
  article-title: A TALE nuclease architecture for efficient genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1755
– volume: 34
  start-page: 4791
  year: 2006
  ident: 10.1016/j.cell.2016.10.044_bib162
  article-title: Homing endonuclease I-CreI derivatives with novel DNA target specificities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl645
– volume: 164
  start-page: 950
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib64
  article-title: Structure and engineering of francisella novicida Cas9
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.039
– volume: 34
  start-page: 1060
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib126
  article-title: Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3658
– volume: 15
  start-page: 12
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib177
  article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.06.011
– volume: 190
  start-page: 1390
  year: 2008
  ident: 10.1016/j.cell.2016.10.044_bib32
  article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01412-07
– volume: 34
  start-page: 339
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib159
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3481
– volume: 284
  start-page: 133
  year: 2004
  ident: 10.1016/j.cell.2016.10.044_bib115
  article-title: Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2003.10.010
– volume: 315
  start-page: 1709
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib5
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 14
  start-page: 8096
  year: 1994
  ident: 10.1016/j.cell.2016.10.044_bib163
  article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.14.12.8096
– volume: 1
  start-page: e60
  year: 2005
  ident: 10.1016/j.cell.2016.10.044_bib57
  article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010060
– volume: 31
  start-page: 230
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib24
  article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2507
– volume: 37
  start-page: 5405
  year: 2009
  ident: 10.1016/j.cell.2016.10.044_bib53
  article-title: Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp548
– volume: 520
  start-page: 186
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib158
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 11
  start-page: 316
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib30
  article-title: Small molecule-triggered Cas9 protein with improved genome-editing specificity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1793
– volume: 113
  start-page: 2868
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib205
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1520244113
– volume: 5
  start-page: 866
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib122
  article-title: Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation
  publication-title: Biol. Open
  doi: 10.1242/bio.019067
– volume: 33
  start-page: 139
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib226
  article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3149
– volume: 533
  start-page: 125
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib141
  article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
  publication-title: Nature
  doi: 10.1038/nature17664
– volume: 26
  start-page: 443
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib52
  article-title: Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2015.074
– volume: 33
  start-page: 1293
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib87
  article-title: Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3404
– volume: 12
  start-page: 1893
  year: 2001
  ident: 10.1016/j.cell.2016.10.044_bib93
  article-title: Systematic determination of the packaging limit of lentiviral vectors
  publication-title: Hum. Gene Ther.
  doi: 10.1089/104303401753153947
– volume: 163
  start-page: 759
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib225
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 34
  start-page: 334
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib217
  article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3469
– volume: 244
  start-page: 1288
  year: 1989
  ident: 10.1016/j.cell.2016.10.044_bib13
  article-title: Altering the genome by homologous recombination
  publication-title: Science
  doi: 10.1126/science.2660260
– volume: 43
  start-page: 3389
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib136
  article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv137
– volume: 24
  start-page: 372
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib58
  article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.11
– volume: 25
  start-page: 1158
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib151
  article-title: Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators
  publication-title: Genome Res.
  doi: 10.1101/gr.179044.114
– volume: 345
  start-page: 1184
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib112
  article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
  publication-title: Science
  doi: 10.1126/science.1254445
– volume: 44
  start-page: 419
  year: 1986
  ident: 10.1016/j.cell.2016.10.044_bib190
  article-title: High frequency targeting of genes to specific sites in the mammalian genome
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90463-0
– volume: 154
  start-page: 1380
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib156
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 13
  start-page: 653
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib172
  article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.002
– volume: 31
  start-page: 227
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib72
  article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2501
– volume: 32
  start-page: 677
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib94
  article-title: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2916
– volume: 343
  start-page: 80
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib201
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science
  doi: 10.1126/science.1246981
– volume: 32
  start-page: 347
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib167
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2842
– volume: 140
  start-page: 4982
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib68
  article-title: Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish
  publication-title: Development
  doi: 10.1242/dev.099085
– volume: 9
  start-page: e113232
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib95
  article-title: Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113232
– volume: 5
  start-page: 10833
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib155
  article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus
  publication-title: Sci. Rep.
  doi: 10.1038/srep10833
– volume: 31
  start-page: 3676
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib107
  article-title: CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv423
– volume: 351
  start-page: 403
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib131
  article-title: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aad5143
– volume: 16
  start-page: 142
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib222
  article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.003
– volume: 122
  start-page: 519
  year: 1989
  ident: 10.1016/j.cell.2016.10.044_bib164
  article-title: Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/122.3.519
– volume: 8
  start-page: e68708
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib71
  article-title: Heritable and precise zebrafish genome editing using a CRISPR-Cas system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068708
– volume: 13
  start-page: 563
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib19
  article-title: Comparison of Cas9 activators in multiple species
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3871
– volume: 167
  start-page: 233
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib109
  article-title: Editing DNA methylation in the mammalian genome
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.056
– volume: 3
  start-page: e03401
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib38
  article-title: Concerning RNA-guided gene drives for the alteration of wild populations
  publication-title: eLife
  doi: 10.7554/eLife.03401
– volume: 109
  start-page: E2579
  year: 2012
  ident: 10.1016/j.cell.2016.10.044_bib48
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208507109
– volume: 300
  start-page: 764
  year: 2003
  ident: 10.1016/j.cell.2016.10.044_bib9
  article-title: Enhancing gene targeting with designed zinc finger nucleases
  publication-title: Science
  doi: 10.1126/science.1079512
– volume: 43
  start-page: 6450
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib191
  article-title: Development of an intein-mediated split-Cas9 system for gene therapy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv601
– volume: 16
  start-page: 159
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib82
  article-title: Chromatin regulation at the frontier of synthetic biology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3900
– volume: 3
  start-page: 940
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib16
  article-title: A CRISPR/Cas9-based system for reprogramming cell lineage specification
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2014.09.013
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib35
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 14
  start-page: 49
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib80
  article-title: TALENs: a widely applicable technology for targeted genome editing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3486
– volume: 22
  start-page: 404
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib230
  article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
  publication-title: Gene Ther.
  doi: 10.1038/gt.2015.2
– volume: 10
  start-page: 973
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib147
  article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2600
– volume: 4
  start-page: 143
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib101
  article-title: Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2014.10.013
– volume: 153
  start-page: 910
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib200
  article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.025
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib119
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 110
  start-page: 15644
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib66
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313587110
– volume: 12
  start-page: 595
  year: 1993
  ident: 10.1016/j.cell.2016.10.044_bib146
  article-title: The RNA binding site of bacteriophage MS2 coat protein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1993.tb05691.x
– volume: 15
  start-page: 1463
  year: 2008
  ident: 10.1016/j.cell.2016.10.044_bib14
  article-title: Progress and prospects: zinc-finger nucleases as gene therapy agents
  publication-title: Gene Ther.
  doi: 10.1038/gt.2008.145
– volume: 34
  start-page: 646
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib137
  article-title: Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3528
– volume: 47
  start-page: 469
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib103
  article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3258
– volume: 4
  start-page: 220
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib7
  article-title: Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.020
– volume: 31
  start-page: 822
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib41
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2623
– volume: 514
  start-page: 380
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib213
  article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver
  publication-title: Nature
  doi: 10.1038/nature13589
– volume: 5
  start-page: 5507
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib216
  article-title: Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6507
– volume: 509
  start-page: 487
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib231
  article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
  publication-title: Nature
  doi: 10.1038/nature13166
– volume: 588
  start-page: 3954
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib23
  article-title: Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2014.09.008
– volume: 546
  start-page: 119
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib12
  article-title: Genome editing in human stem cells
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801185-0.00006-4
– volume: 351
  start-page: 867
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib77
  article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
  publication-title: Science
  doi: 10.1126/science.aad8282
– volume: 159
  start-page: 647
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib50
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 15
  start-page: 215
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib51
  article-title: An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.05.018
– volume: 23
  start-page: 465
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib17
  article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.45
– volume: 3
  start-page: e186
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib105
  article-title: The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2014.38
– volume: 112
  start-page: E6736
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib45
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1521077112
– volume: 159
  start-page: 635
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib187
  article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.039
– volume: 6
  start-page: 6244
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib139
  article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7244
– volume: 32
  start-page: 941
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib60
  article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2951
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib134
  article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
  publication-title: Science
  doi: 10.1126/science.aaf8729
– volume: 24
  start-page: 1020
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib154
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
  doi: 10.1101/gr.171264.113
– volume: 60
  start-page: 242
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib229
  article-title: DNase H Activity of Neisseria meningitidis Cas9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.020
– volume: 96
  start-page: 2381
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib100
  article-title: Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.000139
– volume: 17
  start-page: 233
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib21
  article-title: Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.06.001
– volume: 10
  start-page: 1116
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib37
  article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2681
– volume: 18
  start-page: 573
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib65
  article-title: Induced pluripotent stem cells meet genome editing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.04.013
– volume: 13
  start-page: 127
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib189
  article-title: Editing the epigenome: technologies for programmable transcription and epigenetic modulation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3733
– volume: 12
  start-page: 401
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib81
  article-title: Functional annotation of native enhancers with a Cas9-histone demethylase fusion
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3325
– volume: 15
  start-page: 2063
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib182
  article-title: Hydrodynamic gene delivery: its principles and applications
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300314
– volume: 160
  start-page: 339
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib223
  article-title: Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.052
– volume: 24
  start-page: 1012
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib84
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
  doi: 10.1101/gr.171322.113
– volume: 18
  start-page: 80
  year: 2010
  ident: 10.1016/j.cell.2016.10.044_bib207
  article-title: Effect of genome size on AAV vector packaging
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.255
– volume: 33
  start-page: 390
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib36
  article-title: Inducible in vivo genome editing with CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3155
– volume: 2
  start-page: e00471
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib79
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
  doi: 10.7554/eLife.00471
– volume: 318
  start-page: 1917
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib221
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 26
  start-page: 114
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib138
  article-title: Fanconi anemia gene editing by the CRISPR/Cas9 system
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2014.111
– volume: 326
  start-page: 1509
  year: 2009
  ident: 10.1016/j.cell.2016.10.044_bib11
  article-title: Breaking the code of DNA binding specificity of TAL-type III effectors
  publication-title: Science
  doi: 10.1126/science.1178811
– volume: 159
  start-page: 440
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib149
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.014
– volume: 44
  start-page: 113
  year: 2010
  ident: 10.1016/j.cell.2016.10.044_bib62
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-051710-150955
– volume: 33
  start-page: 187
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib194
  article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3117
– volume: 31
  start-page: 827
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib69
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2647
– volume: 39
  start-page: 359
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib96
  article-title: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq704
– volume: 26
  start-page: 432
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib203
  article-title: Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2015.087
– volume: 10
  start-page: 977
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib117
  article-title: CRISPR RNA-guided activation of endogenous human genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2598
– volume: 4
  start-page: 773
  year: 2004
  ident: 10.1016/j.cell.2016.10.044_bib124
  article-title: What is regenerative medicine? Emergence of applied stem cell and developmental biology
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.4.6.773
– volume: 513
  start-page: 120
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib233
  article-title: Saturation editing of genomic regions by multiplex homology-directed repair
  publication-title: Nature
  doi: 10.1038/nature13695
– volume: 195
  start-page: 331
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib110
  article-title: Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions
  publication-title: Genetics
  doi: 10.1534/genetics.113.155382
– volume: 11
  start-page: 636
  year: 2010
  ident: 10.1016/j.cell.2016.10.044_bib195
  article-title: Genome editing with engineered zinc finger nucleases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2842
– volume: 7
  start-page: 93
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib160
  article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing
  publication-title: Genome Med.
  doi: 10.1186/s13073-015-0215-6
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.cell.2016.10.044_bib78
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 152
  start-page: 1173
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib153
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 44
  start-page: 5615
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib198
  article-title: Repurposing the CRISPR-Cas9 system for targeted DNA methylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw159
– volume: 12
  start-page: 237
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib85
  article-title: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3284
– volume: 39
  start-page: 6315
  year: 2011
  ident: 10.1016/j.cell.2016.10.044_bib97
  article-title: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr188
– volume: 137
  start-page: 5642
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib61
  article-title: Optical Control of CRISPR/Cas9 Gene Editing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512664v
– volume: 12
  start-page: 1143
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib188
  article-title: Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3630
– volume: 32
  start-page: 569
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib193
  article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2908
– volume: 160
  start-page: 1246
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib20
  article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.038
– year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib168
  article-title: Genome-scale CRISPR pooled screens
  publication-title: Anal. Biochem.
– volume: 31
  start-page: 839
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib145
  article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2673
– volume: 25
  start-page: 1298
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib111
  article-title: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1353
– volume: 33
  start-page: 538
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib121
  article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3190
– volume: 18
  start-page: 33
  year: 2000
  ident: 10.1016/j.cell.2016.10.044_bib114
  article-title: Synthetic DNA delivery systems
  publication-title: Nat. Biotechnol.
  doi: 10.1038/71889
– volume: 24
  start-page: 636
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib129
  article-title: Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.218
– volume: 516
  start-page: 423
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib116
  article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
  publication-title: Nature
  doi: 10.1038/nature13902
– volume: 2
  start-page: 1692
  year: 2007
  ident: 10.1016/j.cell.2016.10.044_bib224
  article-title: High-efficiency transfection of mammalian neurons via nucleofection
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.226
– volume: 32
  start-page: 279
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib42
  article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2808
– volume: 532
  start-page: 517
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib39
  article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
  publication-title: Nature
  doi: 10.1038/nature17945
– volume: 32
  start-page: 3683
  year: 2004
  ident: 10.1016/j.cell.2016.10.044_bib165
  article-title: Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh703
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.cell.2016.10.044_bib186
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 43
  start-page: 9379
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib148
  article-title: Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv993
– volume: 23
  start-page: 1163
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib22
  article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.122
– volume: 24
  start-page: 1526
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib211
  article-title: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac
  publication-title: Genome Res.
  doi: 10.1101/gr.173427.114
– volume: 154
  start-page: 442
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib49
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 17
  start-page: 300
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib192
  article-title: Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.28
– volume: 33
  start-page: 543
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib26
  article-title: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3198
– volume: 33
  start-page: 73
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib232
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 32
  start-page: 577
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib55
  article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2909
– volume: 7
  start-page: 53
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib128
  article-title: Precision cancer mouse models through genome editing with CRISPR-Cas9
  publication-title: Genome Med.
  doi: 10.1186/s13073-015-0178-7
– volume: 517
  start-page: 583
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib92
  article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 13
  start-page: 659
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib208
  article-title: Correction of a genetic disease in mouse via use of CRISPR-Cas9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.10.016
– volume: 281
  start-page: 1161
  year: 1998
  ident: 10.1016/j.cell.2016.10.044_bib6
  article-title: Sustained delivery of proteins for novel therapeutic agents
  publication-title: Science
  doi: 10.1126/science.281.5380.1161
– volume: 157
  start-page: 1262
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib70
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 208
  start-page: 44
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib102
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.04.024
– volume: 12
  start-page: 393
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib33
  article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.006
– volume: 16
  start-page: 257
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib40
  article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0817-8
– volume: 34
  start-page: 869
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib90
  article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3620
– volume: 533
  start-page: 420
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib91
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 17
  start-page: 213
  year: 2015
  ident: 10.1016/j.cell.2016.10.044_bib142
  article-title: Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.07.001
– volume: 21
  start-page: 562
  year: 2013
  ident: 10.1016/j.cell.2016.10.044_bib47
  article-title: RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.09.001
– volume: 529
  start-page: 490
  year: 2016
  ident: 10.1016/j.cell.2016.10.044_bib89
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
  doi: 10.1038/nature16526
– volume: 326
  start-page: 1501
  year: 2009
  ident: 10.1016/j.cell.2016.10.044_bib127
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
  doi: 10.1126/science.1178817
– volume: 32
  start-page: 670
  year: 2014
  ident: 10.1016/j.cell.2016.10.044_bib209
  article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2889
– reference: 28431253 - Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005.
SSID ssj0008555
Score 2.673462
SecondaryResourceType review_article
Snippet The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Animals
biotechnology
Cells, Cultured
CRISPR-Cas Systems
Disease - genetics
Disease Models, Animal
DNA
Epigenomics - methods
Gene Editing - methods
Genetic Therapy
genome
Humans
mammals
therapeutics
Title CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes
URI https://dx.doi.org/10.1016/j.cell.2016.10.044
https://www.ncbi.nlm.nih.gov/pubmed/27866654
https://www.proquest.com/docview/1842545640
https://www.proquest.com/docview/2000433414
https://pubmed.ncbi.nlm.nih.gov/PMC5235943
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqSkhcEDtlk5G4odAmsePkSEtLQQKhQqXeIid2RFiSqsuhf89MNlFQe-CSgz22nLE9fmPPQsilpaJIiVAAclMtg1kS9pyCD6pAnlBcBCozkH1y-kP2MOKjGumUvjBoVlnI_lymZ9K6KGkW3GyO4xh9fD3LdTJEAdudoxOfzdzMiW_UrqSxy3mexcCDUQB14TiT23jh5TiadznXaOHF2KrD6S_4_G1D-eNQ6m2TrQJN0pt8wDukppNdspHnl1zskdvO4P7leWC04ahStLpFB-WYAlalgP3oo0ziMoUXTSPanX_IySKF_uidTtIvPd0nw173tdM3irQJRgjYYGZIHTGppMkD2KueBIAXCTvyvAigAbcCrVlkhQADuQbVD6YkVKAFui6TMvQUaDP2AaknaaKPCNUB4DembOUoxTQPpSkdxxWB7QbC5rZoELPklx8WMcUxtcWnXxqPvfvIYx95jGXA4wa5qtqM84gaa6l5OQ3-0rrwQeSvbXdRzpkPGwarZaLT-dQ38eERg-i0VtNY2QspHPDQz2E-z9VYLeE6mLK5QcTSCqgIMGD3ck0Sv2WBu0Hp5x6zj__5Tydk00JQ0TINk52S-mwy12cAiWbBebbmvwEH7gj6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RahcKp5lWx5GghMK3Th2HB840Be79CFUWmlvrhM7YoEmVXdXaH8Xf5CZvMSC2gNSLzk4tmXP2DPf2OMZgNfc5blTmULk5vqB4Bb3nMMPmUBaOalSVznIHseDM_FpJEdL8Kt9C0NulY3sr2V6Ja2bkq2GmluX4zG98dU8iStEgdtd6saz8sDPf6LdNnk_3EUmv-F8f-90ZxA0qQWCDPXnNLA-F9bZUKa4nrVFEJSrKNc6R_Upeeq9yHmGUEl6NI9w2JlDSylJhLWZdoj4I-x3Ge4g-lAkDYaj7U78J1LWaRM0ThuH17zUqZ3K6DSe_Mnid-RSJsR12vBftPu30-YfWnD_Pqw18JV9qCn0AJZ88RDu1gkt549gd-dk-OXzSbCNutGx7tgerXGG4Jgh2GRHthi3OcNYmbO92Xd7NS-xP_bRF-WFnzyGs1sh5hNYKcrCPwXmUwSMwkUudk54mdnQxnGi0ihJVSQj1YOwpZfJmiDmlEvjh2m91b4ZorEhGlMZ0rgHb7s2l3UIjxtry5YNZmEhGtQxN7Z71fLM4A6l37bw5WxiQrrppKg9_evr8OpKFhEF9rNe87kbK1dJTDmie6AWVkBXgSKEL_4pxl-rSOGSR1KLaOM_5_QSVgenR4fmcHh8sAn3OCGafhiE_BmsTK9m_jnisWn6olr_DM5ve8P9BvaGRa4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Based+Technologies+for+the+Manipulation+of+Eukaryotic+Genomes&rft.jtitle=Cell&rft.au=Komor%2C+Alexis+C.&rft.au=Badran%2C+Ahmed+H.&rft.au=Liu%2C+David+R.&rft.date=2017-01-12&rft.issn=0092-8674&rft.volume=168&rft.issue=1-2&rft.spage=20&rft.epage=36&rft_id=info:doi/10.1016%2Fj.cell.2016.10.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2016_10_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon