Characteristics of Conservation Laws for Difference Equations

Each conservation law of a given partial differential equation is determined (up to equivalence) by a function known as the characteristic. This function is used to find conservation laws, to prove equivalence between conservation laws, and to prove the converse of Noether’s Theorem. Transferring th...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 13; no. 4; pp. 667 - 692
Main Authors Grant, Timothy J., Hydon, Peter E.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.08.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Each conservation law of a given partial differential equation is determined (up to equivalence) by a function known as the characteristic. This function is used to find conservation laws, to prove equivalence between conservation laws, and to prove the converse of Noether’s Theorem. Transferring these results to difference equations is nontrivial, largely because difference operators are not derivations and do not obey the chain rule for derivatives. We show how these problems may be resolved and illustrate various uses of the characteristic. In particular, we establish the converse of Noether’s Theorem for difference equations, we show (without taking a continuum limit) that the conservation laws in the infinite family generated by Rasin and Schiff are distinct, and we obtain all five-point conservation laws for the potential Lotka–Volterra equation.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9151-2