Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments
We investigated the use of various iron amendments (metallic Fe and soluble Fe(II)- and Fe(III)-halide salts) to reduce arsenic (As) bioaccessibility (as a surrogate for oral bioavailability) in contaminated soils. Soluble Fe(II)- and Fe(III)-salts were more effective than metallic Fe in reducing As...
Saved in:
Published in | Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Vol. 42; no. 9; pp. 1317 - 1329 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis Group
01.01.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigated the use of various iron amendments (metallic Fe and soluble Fe(II)- and Fe(III)-halide salts) to reduce arsenic (As) bioaccessibility (as a surrogate for oral bioavailability) in contaminated soils. Soluble Fe(II)- and Fe(III)-salts were more effective than metallic Fe in reducing As bioaccessibility. Adding soluble Fe(III)-salts to soil reduces As bioaccessibility in two ways, by increasing the Fe(III) (hydr)oxide content and by lowering the soil pH. A detailed investigation into the effect of soil moisture when adding Fe(III) amendments indicated that the reaction can occur in situ if sufficient (≥ 30% moisture) is added. If the amendments are added to the soil without moisture, a reduction in bioaccessibility will occur in the extraction fluid itself (i.e., an experimental artifact not reflecting a true in situ reduction in bioaccessibility). Adding Fe (III)-salts to nine As-contaminated soils at a Fe:As molar ratio of 100:1 reduced the average bioaccessibility in the soils by approximately a factor of two. Greater reductions in As bioaccessibility can be achieved by increasing the Fe:As molar ratio. These results suggest decreasing As bioaccessibility and bioavailability in soil by adding Fe amendments may be an effective strategy to remediate As-contaminated soils. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ISSN: | 1093-4529 1532-4117 |
DOI: | 10.1080/10934520701436047 |