Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods
Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN mode...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 41; no. 2; pp. 398 - 407 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2008
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2008.01.068 |
Cover
Loading…
Abstract | Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the “virtual-typical- subject” (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the “individual-structure” (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the “common-structure” (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence. |
---|---|
AbstractList | Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the "virtual-typical- subject" (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the "individual-structure" (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the "common-structure" (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the "virtual-typical- subject" (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the "individual-structure" (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the "common-structure" (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence. Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the “virtual-typical- subject” (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the “individual-structure” (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the “common-structure” (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence. |
Author | McKeown, Martin J. Li, Junning Wang, Z. Jane Palmer, Samantha J. |
Author_xml | – sequence: 1 givenname: Junning surname: Li fullname: Li, Junning organization: Department of Electrical and Computer Engineering, University of British Columbia, Canada – sequence: 2 givenname: Z. Jane surname: Wang fullname: Wang, Z. Jane email: zjanew@ece.ubc.ca organization: Department of Electrical and Computer Engineering, University of British Columbia, Canada – sequence: 3 givenname: Samantha J. surname: Palmer fullname: Palmer, Samantha J. organization: Pacific Parkinson's Research Centre, Brain Research Centre, University of British Columbia, Canada – sequence: 4 givenname: Martin J. surname: McKeown fullname: McKeown, Martin J. organization: Pacific Parkinson's Research Centre, Brain Research Centre, University of British Columbia, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18406629$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gL6BISNwSxnbsJBwQbWmhUhECwdlynfHibWIvdgLKv8erLaq0F_Zky3rmsWbeOSVHPngkpKBQUaDyzbryOMfgRr3CigG0FdAKZPuEnFDoRNmJhh1t74KXLaXdMTlNaQ0AHa3bZ-SYtjVIyboT8vXD4vXoTHGhF0xO-8Lj9CfE-2IMPQ7Or4pgC_v5283b4rwwYdzo6FLw29dVDPOm1F4PS3KpGHH6Gfr0nDy1ekj44uE8Iz-ur75ffipvv3y8uTy_LY0Q9VTWhnFgRvC65oY3vAEuje262lKKYLTsJRVWWo7SaqNBiFZzdpc7MxqtZfyMvN55NzH8mjFNanTJ4DBoj2FOqqGS1YK2_wUZBc67Vmbw1R64DnPM7SVFRZ4uNIx1mXr5QM13I_ZqE3MMcVH_ZpqBdgeYGFKKaB8RUNv41Fo9xqe28SmgKn-QS9_tlRo36ckFP0XthkMEFzsB5sn_dhhVMg69wd5FNJPqgztE8n5PYvIiOKOHe1wOU_wFpTfSJA |
CitedBy_id | crossref_primary_10_1109_TPAMI_2012_129 crossref_primary_10_7554_eLife_86892_3 crossref_primary_10_1002_hbm_26763 crossref_primary_10_3389_fncom_2014_00131 crossref_primary_10_1214_23_BA1377 crossref_primary_10_1016_j_ijar_2013_03_013 crossref_primary_10_1016_j_neuroimage_2009_12_120 crossref_primary_10_1016_j_compbiomed_2011_04_011 crossref_primary_10_1002_mp_13522 crossref_primary_10_1109_JSTSP_2008_2007816 crossref_primary_10_1176_appi_ajp_2014_14030382 crossref_primary_10_5691_jjb_33_145 crossref_primary_10_7554_eLife_86892 crossref_primary_10_1016_j_neulet_2012_02_008 crossref_primary_10_1007_s12021_020_09472_w crossref_primary_10_3389_fncom_2014_00125 crossref_primary_10_1007_s10827_020_00751_8 crossref_primary_10_1016_j_neuroimage_2009_11_037 crossref_primary_10_1038_s41586_021_04129_3 crossref_primary_10_1162_NECO_a_00690 crossref_primary_10_1186_s12888_018_1675_1 crossref_primary_10_1016_j_nicl_2021_102676 crossref_primary_10_3390_e26030228 crossref_primary_10_3390_a11050070 crossref_primary_10_1089_cap_2012_0054 crossref_primary_10_1002_wics_1339 crossref_primary_10_1089_brain_2011_0045 crossref_primary_10_3389_fncom_2014_00118 crossref_primary_10_1016_j_neuroimage_2009_03_025 crossref_primary_10_1186_1471_2202_10_75 crossref_primary_10_1089_brain_2021_0049 crossref_primary_10_1080_13803395_2012_666227 crossref_primary_10_1038_nn_4110 crossref_primary_10_1192_j_eurpsy_2022_23 crossref_primary_10_1016_j_compbiomed_2023_107747 crossref_primary_10_1016_j_artmed_2020_101879 crossref_primary_10_1371_journal_pone_0298651 crossref_primary_10_1016_j_neuroimage_2012_08_023 crossref_primary_10_1016_j_neuroimage_2024_120684 crossref_primary_10_1016_j_neuroscience_2008_06_053 crossref_primary_10_1016_j_patcog_2024_110687 crossref_primary_10_1109_TBME_2013_2296778 crossref_primary_10_1109_ACCESS_2019_2937581 crossref_primary_10_1016_j_neuroimage_2011_03_010 crossref_primary_10_1038_s41467_019_12756_8 crossref_primary_10_1038_s41598_024_73311_0 crossref_primary_10_1007_s11222_015_9570_9 crossref_primary_10_1007_s11229_017_1568_8 crossref_primary_10_1016_j_jspi_2018_03_004 crossref_primary_10_1371_journal_pcbi_1009006 crossref_primary_10_1111_j_1460_9568_2009_06753_x crossref_primary_10_1007_s00415_018_9134_y crossref_primary_10_1016_j_neuroimage_2011_03_018 crossref_primary_10_1002_hbm_23456 crossref_primary_10_3389_fnhum_2015_00081 crossref_primary_10_1109_TBME_2014_2359211 |
Cites_doi | 10.1007/BF00253633 10.1073/pnas.231499798 10.1016/j.neuroimage.2007.06.003 10.1002/hbm.460020107 10.1111/1467-9868.00346 10.1212/WNL.17.5.427 10.1111/j.1460-9568.2006.04677.x 10.1155/2000/421719 10.1006/nimg.2002.1231 10.1016/S1053-8119(03)00160-5 10.1016/S1053-8119(03)00059-4 10.1063/1.1699114 10.1098/rstb.2005.1642 10.1016/S1364-6613(02)01976-9 10.1163/156856897X00357 10.1016/S1053-8119(03)00202-7 10.1002/hbm.20259 10.1163/156856897X00366 10.1214/aos/1176344136 10.1016/j.neuroimage.2003.08.018 10.1006/nimg.2001.0954 10.1002/mrm.20893 10.1016/j.neuroimage.2003.09.043 10.1109/TMI.2004.837791 10.2307/2529264 10.1016/j.neuroimage.2006.01.031 10.1002/hbm.460020104 10.1016/j.neuroimage.2006.05.035 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. Copyright Elsevier Limited Jun 1, 2008 |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: Copyright Elsevier Limited Jun 1, 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 |
DOI | 10.1016/j.neuroimage.2008.01.068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 407 |
ExternalDocumentID | 3244752731 18406629 10_1016_j_neuroimage_2008_01_068 S1053811908001195 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 |
ID | FETCH-LOGICAL-c554t-4c2302c53443c3737036cf994f11e0ca6d615f6f3e6faca0558a32b957caeff23 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Fri Sep 05 09:49:22 EDT 2025 Fri Sep 05 05:30:32 EDT 2025 Wed Aug 13 08:08:11 EDT 2025 Mon Jul 21 05:55:11 EDT 2025 Tue Jul 01 02:14:20 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Tue Aug 26 17:33:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Group analysis Parkinson's disease Functional magnetic resonance imaging (fMRI) Dynamic Bayesian network |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-4c2302c53443c3737036cf994f11e0ca6d615f6f3e6faca0558a32b957caeff23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18406629 |
PQID | 1506807229 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_71624518 proquest_miscellaneous_21033986 proquest_journals_1506807229 pubmed_primary_18406629 crossref_primary_10_1016_j_neuroimage_2008_01_068 crossref_citationtrail_10_1016_j_neuroimage_2008_01_068 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2008_01_068 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2008_01_068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Turner, Grafton, McIntosh, DeLong, Hoffman (bib34) 2003; 19 Kim, Zhu, Chang, Bentler, Ernst (bib12) 2007; 28 Liao, Krolik, McKeown (bib16) 2005; 24 Niculescu-Mizil, Caruana (bib22) 2007 Vandenbroucke, Goekoop, Duschek, Netelenbos, Kuijer, Barkhof, Scheltens, Rombouts (bib35) 2004; 21 Pope, Praamstra, Wing (bib25) 2006; 23 Sugihara, Kaminaga, Sugishita (bib32) 2006; 32 Brainard (bib1) 1997; 10 Harrison, Penny, Friston (bib8) 2003; 19 Friston (bib4) 1994; 2 Murphy, K. P., 2002. Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley. Yang, Chang (bib36) 2002; 32 Storey (bib31) 2002; 64 Liao, McKeown, Krolik (bib17) 2006; 55 Mechelli, Penny, Price, Gitelman, Friston (bib19) 2002; 17 Pelli (bib23) 1997; 10 Goncalves, Hall, Johnsrude, Haggard (bib6) 2001; 14 Kherif, Poline, Meriaux, Benali, Flandin, Brett (bib11) 2003; 20 McIntosh, Gonzalez-Lima (bib18) 1994; 2 Schwarz (bib29) 1978; 6 Price, Friston (bib26) 2002; 6 Rajapakse, Zhou (bib27) 2007; 37 Li, Wang, McKeown (bib15) 2007 Zheng, Rajapakse (bib37) 2006; 31 Rorden, Brett (bib28) 2000; 12 Harrison, Friston (bib7) 2004 Lauritzen, S.L., 1996b. Graphical Models. Clarendon Press, Oxford University Press, Ch. 3.2.2, pp. 46–52. Hoehn, Yahr (bib9) 1967; 17 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib20) 1953; 21 Stelmach, Teasdale, Phillips, Worringham (bib30) 1989; 76 Edelman, Gally (bib3) 2001; 98 Friston, Harrison, Penny (bib5) 2003; 19 (bib10) 2002 Penny, Ghahramani, Friston (bib24) 2005; 360 Talairach, Tournoux (bib33) 1988 Corbeil, Searle (bib2) 1976; 32 Lauritzen, S. L., 1996a. Graphical Models. Clarendon Press, Oxford University Press, Oxford, New York. Stelmach (10.1016/j.neuroimage.2008.01.068_bib30) 1989; 76 Metropolis (10.1016/j.neuroimage.2008.01.068_bib20) 1953; 21 Goncalves (10.1016/j.neuroimage.2008.01.068_bib6) 2001; 14 Zheng (10.1016/j.neuroimage.2008.01.068_bib37) 2006; 31 Pelli (10.1016/j.neuroimage.2008.01.068_bib23) 1997; 10 Penny (10.1016/j.neuroimage.2008.01.068_bib24) 2005; 360 Mechelli (10.1016/j.neuroimage.2008.01.068_bib19) 2002; 17 Harrison (10.1016/j.neuroimage.2008.01.068_bib7) 2004 Hoehn (10.1016/j.neuroimage.2008.01.068_bib9) 1967; 17 Niculescu-Mizil (10.1016/j.neuroimage.2008.01.068_bib22) 2007 Friston (10.1016/j.neuroimage.2008.01.068_bib4) 1994; 2 Rorden (10.1016/j.neuroimage.2008.01.068_bib28) 2000; 12 Li (10.1016/j.neuroimage.2008.01.068_bib15) 2007 Talairach (10.1016/j.neuroimage.2008.01.068_bib33) 1988 Friston (10.1016/j.neuroimage.2008.01.068_bib5) 2003; 19 Liao (10.1016/j.neuroimage.2008.01.068_bib17) 2006; 55 10.1016/j.neuroimage.2008.01.068_bib21 Schwarz (10.1016/j.neuroimage.2008.01.068_bib29) 1978; 6 Kim (10.1016/j.neuroimage.2008.01.068_bib12) 2007; 28 Pope (10.1016/j.neuroimage.2008.01.068_bib25) 2006; 23 Turner (10.1016/j.neuroimage.2008.01.068_bib34) 2003; 19 Storey (10.1016/j.neuroimage.2008.01.068_bib31) 2002; 64 Brainard (10.1016/j.neuroimage.2008.01.068_bib1) 1997; 10 (10.1016/j.neuroimage.2008.01.068_bib10) 2002 McIntosh (10.1016/j.neuroimage.2008.01.068_bib18) 1994; 2 Sugihara (10.1016/j.neuroimage.2008.01.068_bib32) 2006; 32 Yang (10.1016/j.neuroimage.2008.01.068_bib36) 2002; 32 Liao (10.1016/j.neuroimage.2008.01.068_bib16) 2005; 24 Edelman (10.1016/j.neuroimage.2008.01.068_bib3) 2001; 98 Rajapakse (10.1016/j.neuroimage.2008.01.068_bib27) 2007; 37 Kherif (10.1016/j.neuroimage.2008.01.068_bib11) 2003; 20 Harrison (10.1016/j.neuroimage.2008.01.068_bib8) 2003; 19 Corbeil (10.1016/j.neuroimage.2008.01.068_bib2) 1976; 32 Price (10.1016/j.neuroimage.2008.01.068_bib26) 2002; 6 Vandenbroucke (10.1016/j.neuroimage.2008.01.068_bib35) 2004; 21 10.1016/j.neuroimage.2008.01.068_bib14 10.1016/j.neuroimage.2008.01.068_bib13 |
References_xml | – volume: 21 start-page: 173 year: 2004 end-page: 180 ident: bib35 article-title: Interindividual differences of medial temporal lobe activation during encoding in an elderly population studied by fMRI publication-title: NeuroImage – year: 2004 ident: bib7 article-title: Human Brain Function – volume: 55 start-page: 1396 year: 2006 end-page: 1413 ident: bib17 article-title: Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis publication-title: Magn. Reson. Med. – volume: 360 start-page: 983 year: 2005 end-page: 993 ident: bib24 article-title: Bilinear dynamical systems publication-title: Phil. Trans. R. Soc. B – volume: 76 start-page: 165 year: 1989 end-page: 172 ident: bib30 article-title: Force production characteristics in Parkinson's disease publication-title: Exp. Brain Res. – volume: 2 start-page: 2 year: 1994 end-page: 22 ident: bib18 article-title: Structural equation modeling and its application to network analysis in functional brain imaging publication-title: Hum. Brain Mapp. – volume: 32 start-page: 779 year: 1976 end-page: 791 ident: bib2 article-title: A comparison of variance component estimators publication-title: Biometrics – volume: 17 start-page: 427 year: 1967 end-page: 442 ident: bib9 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bib20 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. – volume: 19 start-page: 163 year: 2003 end-page: 179 ident: bib34 article-title: The functional anatomy of Parkinsonian bradykinesia publication-title: Neuroimage – volume: 19 start-page: 1273 year: 2003 end-page: 1302 (Aug.) ident: bib5 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 32 start-page: 1837 year: 2006 end-page: 1849 ident: bib32 article-title: Interindividual uniformity and variety of the “writing center”: a functional MRI study publication-title: NeuroImage – reference: Lauritzen, S. L., 1996a. Graphical Models. Clarendon Press, Oxford University Press, Oxford, New York. – volume: 10 start-page: 437 year: 1997 end-page: 442 ident: bib23 article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. – volume: 28 start-page: 85 year: 2007 end-page: 93 ident: bib12 article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data publication-title: Hum. Brain Mapp. – year: 2002 ident: bib10 publication-title: Parkinson's Disease and Movement Disorders – volume: 10 start-page: 433 year: 1997 end-page: 436 ident: bib1 article-title: The psychophysics toolbox publication-title: Spat. Vis. – volume: 20 start-page: 2197 year: 2003 end-page: 2208 ident: bib11 article-title: Group analysis in functional neuroimaging: selecting subjects using similarity measures publication-title: NeuroImage – volume: 64 start-page: 479 year: 2002 end-page: 498 ident: bib31 article-title: A direct approach to false discovery rates publication-title: J. R. Stat. Soc., Ser. B Stat. Methodol. – volume: 37 start-page: 749 year: 2007 end-page: 760 ident: bib27 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: NeuroImage – reference: Lauritzen, S.L., 1996b. Graphical Models. Clarendon Press, Oxford University Press, Ch. 3.2.2, pp. 46–52. – volume: 19 start-page: 1477 year: 2003 end-page: 1491 ident: bib8 article-title: Multivariate autoregressive modeling of fMRI time series publication-title: NeuroImage – volume: 2 start-page: 56 year: 1994 end-page: 78 ident: bib4 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. – start-page: I year: 2007 end-page: 429–I–432 ident: bib15 article-title: A multi-subject dynamic Bayesian network (DBN) framework for brain effective connectivity publication-title: Acoustics, Speech and Signal Processing, 2007. IEEE International Conference on. Vol. 1 – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib29 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 17 start-page: 1459 year: 2002 end-page: 1469 ident: bib19 article-title: Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities publication-title: NeuroImage – volume: 32 start-page: 419 year: 2002 end-page: 428 ident: bib36 article-title: Comparison of score metrics for Bayesian network learning. Systems, Man and Cybernetics: Part A publication-title: IEEE Transactions on – volume: 31 start-page: 1601 year: 2006 end-page: 1613 ident: bib37 article-title: Learning functional structure from fMR images publication-title: NeuroImage – volume: 6 start-page: 416 year: 2002 end-page: 421 ident: bib26 article-title: Degeneracy and cognitive anatomy publication-title: Trends Cogn. Sci. – reference: Murphy, K. P., 2002. Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley. – volume: 12 start-page: 191 year: 2000 end-page: 200 ident: bib28 article-title: Stereotaxic display of brain lesions publication-title: Behav. Neurol. – year: 2007 ident: bib22 article-title: Inductive transfer for Bayesian network structure learning publication-title: Proceedings of the 11th International Conference on AI and Statistics (AISTATS '07) – year: 1988 ident: bib33 article-title: Co-Planar Stereotaxic Atlas of the Human Brain – volume: 14 start-page: 1353 year: 2001 end-page: 1360 (Dec.) ident: bib6 article-title: Can meaningful effective connectivities be obtained between auditory cortical regions? publication-title: NeuroImage – volume: 24 start-page: 29 year: 2005 end-page: 44 ident: bib16 article-title: An information-theoretic criterion for intrasubject alignment of fMRI time series: motion corrected independent component analysis publication-title: IEEE Trans. Med. Imag. – volume: 23 start-page: 1643 year: 2006 end-page: 1650 ident: bib25 article-title: Force and time control in the production of rhythmic movement sequences in Parkinson's disease publication-title: Eur. J. Neurosci. – volume: 98 start-page: 13763 year: 2001 end-page: 13768 ident: bib3 article-title: Degeneracy and complexity in biological systems publication-title: PNAS – year: 2002 ident: 10.1016/j.neuroimage.2008.01.068_bib10 – ident: 10.1016/j.neuroimage.2008.01.068_bib13 – volume: 76 start-page: 165 issue: 1 year: 1989 ident: 10.1016/j.neuroimage.2008.01.068_bib30 article-title: Force production characteristics in Parkinson's disease publication-title: Exp. Brain Res. doi: 10.1007/BF00253633 – volume: 98 start-page: 13763 issue: 24 year: 2001 ident: 10.1016/j.neuroimage.2008.01.068_bib3 article-title: Degeneracy and complexity in biological systems publication-title: PNAS doi: 10.1073/pnas.231499798 – volume: 37 start-page: 749 year: 2007 ident: 10.1016/j.neuroimage.2008.01.068_bib27 article-title: Learning effective brain connectivity with dynamic Bayesian networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.003 – volume: 2 start-page: 56 issue: 1-2 year: 1994 ident: 10.1016/j.neuroimage.2008.01.068_bib4 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020107 – volume: 64 start-page: 479 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2008.01.068_bib31 article-title: A direct approach to false discovery rates publication-title: J. R. Stat. Soc., Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00346 – volume: 17 start-page: 427 issue: 5 year: 1967 ident: 10.1016/j.neuroimage.2008.01.068_bib9 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – volume: 23 start-page: 1643 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2008.01.068_bib25 article-title: Force and time control in the production of rhythmic movement sequences in Parkinson's disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2006.04677.x – volume: 12 start-page: 191 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2008.01.068_bib28 article-title: Stereotaxic display of brain lesions publication-title: Behav. Neurol. doi: 10.1155/2000/421719 – volume: 17 start-page: 1459 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2008.01.068_bib19 article-title: Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities publication-title: NeuroImage doi: 10.1006/nimg.2002.1231 – volume: 19 start-page: 1477 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2008.01.068_bib8 article-title: Multivariate autoregressive modeling of fMRI time series publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00160-5 – volume: 19 start-page: 163 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2008.01.068_bib34 article-title: The functional anatomy of Parkinsonian bradykinesia publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00059-4 – volume: 21 start-page: 1087 issue: 6 year: 1953 ident: 10.1016/j.neuroimage.2008.01.068_bib20 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 360 start-page: 983 issue: 1457 year: 2005 ident: 10.1016/j.neuroimage.2008.01.068_bib24 article-title: Bilinear dynamical systems publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2005.1642 – volume: 6 start-page: 416 issue: 10 year: 2002 ident: 10.1016/j.neuroimage.2008.01.068_bib26 article-title: Degeneracy and cognitive anatomy publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(02)01976-9 – volume: 10 start-page: 433 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2008.01.068_bib1 article-title: The psychophysics toolbox publication-title: Spat. Vis. doi: 10.1163/156856897X00357 – volume: 19 start-page: 1273 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2008.01.068_bib5 article-title: Dynamic causal modelling publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00202-7 – volume: 28 start-page: 85 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2008.01.068_bib12 article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20259 – year: 2007 ident: 10.1016/j.neuroimage.2008.01.068_bib22 article-title: Inductive transfer for Bayesian network structure learning – volume: 10 start-page: 437 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2008.01.068_bib23 article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. doi: 10.1163/156856897X00366 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.neuroimage.2008.01.068_bib29 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – year: 1988 ident: 10.1016/j.neuroimage.2008.01.068_bib33 – year: 2004 ident: 10.1016/j.neuroimage.2008.01.068_bib7 – start-page: I year: 2007 ident: 10.1016/j.neuroimage.2008.01.068_bib15 article-title: A multi-subject dynamic Bayesian network (DBN) framework for brain effective connectivity – volume: 20 start-page: 2197 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2008.01.068_bib11 article-title: Group analysis in functional neuroimaging: selecting subjects using similarity measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.08.018 – volume: 14 start-page: 1353 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2008.01.068_bib6 article-title: Can meaningful effective connectivities be obtained between auditory cortical regions? publication-title: NeuroImage doi: 10.1006/nimg.2001.0954 – volume: 55 start-page: 1396 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2008.01.068_bib17 article-title: Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20893 – volume: 21 start-page: 173 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2008.01.068_bib35 article-title: Interindividual differences of medial temporal lobe activation during encoding in an elderly population studied by fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.09.043 – volume: 32 start-page: 419 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2008.01.068_bib36 article-title: Comparison of score metrics for Bayesian network learning. Systems, Man and Cybernetics: Part A publication-title: IEEE Transactions on – ident: 10.1016/j.neuroimage.2008.01.068_bib14 – ident: 10.1016/j.neuroimage.2008.01.068_bib21 – volume: 24 start-page: 29 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2008.01.068_bib16 article-title: An information-theoretic criterion for intrasubject alignment of fMRI time series: motion corrected independent component analysis publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2004.837791 – volume: 32 start-page: 779 issue: 4 year: 1976 ident: 10.1016/j.neuroimage.2008.01.068_bib2 article-title: A comparison of variance component estimators publication-title: Biometrics doi: 10.2307/2529264 – volume: 31 start-page: 1601 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2008.01.068_bib37 article-title: Learning functional structure from fMR images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.031 – volume: 2 start-page: 2 year: 1994 ident: 10.1016/j.neuroimage.2008.01.068_bib18 article-title: Structural equation modeling and its application to network analysis in functional brain imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020104 – volume: 32 start-page: 1837 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2008.01.068_bib32 article-title: Interindividual uniformity and variety of the “writing center”: a functional MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.035 |
SSID | ssj0009148 |
Score | 2.185199 |
Snippet | Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 398 |
SubjectTerms | Aged Antiparkinson Agents - therapeutic use Bayes Theorem Brain - drug effects Brain - physiopathology Dynamic Bayesian network Female Functional magnetic resonance imaging (fMRI) Group analysis Humans Image Interpretation, Computer-Assisted - methods Levodopa - therapeutic use Magnetic Resonance Imaging Male Methods Models, Neurological Parkinson Disease - drug therapy Parkinson Disease - physiopathology Parkinson's disease Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA-lB-lFrFZdWzUHr-lOvid6qtVShS3UttBbSLIJbGlni7s9ePFv92WS2UWwsOB1Jo8JL3kfmfze7yH0AQ5VIibuiWFTQQR1njilG-KZg4TCOKP6XgSTM3V6Jb5fy-stdDzUwmRYZfX9xaf33ro-GVdtju9ns_EFZAYQbiCgtYW4LFewC533-uHvNczDUFHK4SQneXRF8xSMV88ZObsDy62oSnrYZNLVf4eox1LQPhSdPENPaw6Jj8o0d9FW7J6jJ5N6S_4CnX8pbebxZ_cr5iJJ3BWwN-773kCwwvOE0-THt4_4CIdVJ8L8tK_yIK5SleDSYHqxh65Ovl4en5LaOoEEyA-WRAQ4WrAguRA8cM0zzVZIxohEaWyCU1PIZJJKPKrkgmukbB1n3kgdXEyJ8Zdou5t38TXCvvHSMc_1VBjBNXXaRWmmyqSW-dTIEdKDtmyovOK5vcWtHQBkN3at59r2klrQ8wjRleR94dbYQMYMC2KH2lHwdhYCwAayn1ayf-2xDaUPhvW31c4XNvMzto1mzIzQ-9VrsNB87eK6OH9YWDhUc25a9fiIzOIlJIVPvCr7aq0OOH8rxcyb_5r6PtopMJf88-gAbS9_PsS3kEst_bveWP4ATTIdTA priority: 102 providerName: Elsevier |
Title | Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811908001195 https://dx.doi.org/10.1016/j.neuroimage.2008.01.068 https://www.ncbi.nlm.nih.gov/pubmed/18406629 https://www.proquest.com/docview/1506807229 https://www.proquest.com/docview/21033986 https://www.proquest.com/docview/71624518 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoKyEuiDeBEnzg6rJ-r-GA0pdSIFGJqJSbZXttCQSbQtJDL_3t2GtvcqFVTpZ2PbJke8Yz9sz3AfAuBlXMB2qRIg1DDBuLjJAVssREh0IZJTougslUjC_Y5zmflwu3ZUmr7G1iZ6ibhUt35O8TEl5dSULUp8s_KLFGpdfVQqGxA_Y66LK4n-VcbkB3MculcJyiOnYomTw5v6vDi_zxO2ptyajEB1UCXP3_8XSb-9kdQ6ePwMPiP8JRXvDH4J5vn4D7k_JC_hR8O84U8_DQXPtUIAnbnOgNO86beFDBRYBhMjv7AEfQrVkI09euwgOZAlMCM7n08hm4OD35fjRGhTYBuegbrBBzMawgjlPGqKOSJogtF5RiAWNfOSOa6MUEEagXwThTcV4bSqzi0hkfAqHPwW67aP1LAG1luSGWyoYpRiU20niuGqFCTWyo-ADIfra0K5jiidril-6Tx37qzTwXykus4zwPAF5LXmZcjS1kVL8guq8bjZZOR-O_hezHtWzxLbLPsKX0fr_-uuj4Um925AC8Xf-O2pmeXEzrF1dLHQNqSlUtbu-RELwYx3GIF3lfbaYjxt5CEPXq7sFfgwc5hyXdDO2D3dXfK_8mOkorOwQ7Bzd42OnEEOyNjmZfz1N79mU8je3hyfR89g8bixeh |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqQRcEG8ChfoAR8P6uWsQQi1tldAmgqqVejNery2BYFNIKtQ_xW_EXnuTC0W59LrekaWxPQ975vsAXoSkijvPaqxowzEnpsZGlgWuqQkBhTJKdlwEk6kcnfKPZ-JsA_70vTCxrLK3iZ2hbmY23pG_jkh4VVFSqt6f_8SRNSq-rvYUGmlbHLrL3yFlm78b74X1fUnpwf7JhxHOrALYBte5wNyGqJtawThnlpUsIlBZrxT3hLjCGtkEJ--lZ056Y00hRGUYrZUorXHeR6CDYPI3eexoHcDm7v700_EK5pfw1HwnGK4IUbl2KFWUdQiVX38EO5FrOMmrIkK8_tshXhXwdo7v4A7czhEr2klb7C5suPYe3JjkN_n78HkvkdqjXXPpYksmalNpOepYdoJrRDOP_OR4_AbtILvkPYxfu54SbDIwCkp01vMHcHotKn0Ig3bWuseA6qIWhtasbLjirCSmNE6oRipf0doXYghlry1tM4p5JNP4rvtytW96pedMskl00PMQyFLyPCF5rCGj-gXRfadqsK06uJs1ZN8uZXM0k6KUNaW3-vXX2arM9eoMDGF7ORzsQXzkMa2bXcx1SOEZU5W8-o-IGcYFCVM8SvtqpY6Q7UtJ1ZP_T74NN0cnkyN9NJ4ePoVbqYIm3kttwWDx68I9C2Haon6ezwaCL9d9HP8C9PpP6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEG8ChfoAR9P1ew1CqBCihpIKEJVyM16vLRVBUkgq1L_Gr2O89iYXinLpdXdHlsae13rm-xB6CkWVCJE3xLBWEEFdQ5zSFWmYg4TCOKM6LoLJsTo8Ee-ncrqF_vSzMKmtsveJnaNu5z79I99PSHh1pRkz-7G0RXwcjl6f_SSJQSrdtPZ0GvmIHIWL31C-LV6Nh7DXzxgbvfvy9pAUhgHiIYwuifCQgTMvuRDcc80TGpWPxohIaai8Uy0E_KgiDyo67yopa8dZY6T2LsSYQA_A_V_THLIqsCU91WvAXyryGJ7kpKbUlC6i3FvWYVWe_gCPUbo56fMqgb3-OzRelvp2IXB0E90ouSs-yIftFtoKs9toZ1Ju5--gT8NMb4_fuIuQhjPxLDeZ445vB4IknkccJ5_HL_AB9isGxPS0my4hrkCk4ExsvbiLTq5EoffQ9mw-Cw8QbqpGOtZw3QojuKZOuyBNq0ysWRMrOUC615b1Bc880Wp8t33j2je71nOh26QW9DxAdCV5ljE9NpAx_YbYfmYVvKyFwLOB7MuVbMlrcr6yofRuv_-2-JeFXVvDAO2tXoNnSNc9bhbm5wsLxTznplaXf5HQw4SksMT9fK7W6oC6XylmHv5_8T20A0ZoP4yPjx6h67mVJv2g2kXby1_n4THka8vmSWcYGH29akv8C7b8UrI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+network+modeling+of+fMRI%3A+A+comparison+of+group-analysis+methods&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Li%2C+Junning&rft.au=Wang%2C+Z.+Jane&rft.au=Palmer%2C+Samantha+J.&rft.au=McKeown%2C+Martin+J.&rft.date=2008-06-01&rft.issn=1053-8119&rft.volume=41&rft.issue=2&rft.spage=398&rft.epage=407&rft_id=info:doi/10.1016%2Fj.neuroimage.2008.01.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2008_01_068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |