Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods

Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN mode...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 41; no. 2; pp. 398 - 407
Main Authors Li, Junning, Wang, Z. Jane, Palmer, Samantha J., McKeown, Martin J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2008
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2008.01.068

Cover

Loading…
Abstract Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the “virtual-typical- subject” (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the “individual-structure” (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the “common-structure” (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.
AbstractList Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the "virtual-typical- subject" (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the "individual-structure" (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the "common-structure" (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the "virtual-typical- subject" (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the "individual-structure" (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the "common-structure" (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.
Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the “virtual-typical- subject” (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the “individual-structure” (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the “common-structure” (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.
Author McKeown, Martin J.
Li, Junning
Wang, Z. Jane
Palmer, Samantha J.
Author_xml – sequence: 1
  givenname: Junning
  surname: Li
  fullname: Li, Junning
  organization: Department of Electrical and Computer Engineering, University of British Columbia, Canada
– sequence: 2
  givenname: Z. Jane
  surname: Wang
  fullname: Wang, Z. Jane
  email: zjanew@ece.ubc.ca
  organization: Department of Electrical and Computer Engineering, University of British Columbia, Canada
– sequence: 3
  givenname: Samantha J.
  surname: Palmer
  fullname: Palmer, Samantha J.
  organization: Pacific Parkinson's Research Centre, Brain Research Centre, University of British Columbia, Canada
– sequence: 4
  givenname: Martin J.
  surname: McKeown
  fullname: McKeown, Martin J.
  organization: Pacific Parkinson's Research Centre, Brain Research Centre, University of British Columbia, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18406629$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gL6BISNwSxnbsJBwQbWmhUhECwdlynfHibWIvdgLKv8erLaq0F_Zky3rmsWbeOSVHPngkpKBQUaDyzbryOMfgRr3CigG0FdAKZPuEnFDoRNmJhh1t74KXLaXdMTlNaQ0AHa3bZ-SYtjVIyboT8vXD4vXoTHGhF0xO-8Lj9CfE-2IMPQ7Or4pgC_v5283b4rwwYdzo6FLw29dVDPOm1F4PS3KpGHH6Gfr0nDy1ekj44uE8Iz-ur75ffipvv3y8uTy_LY0Q9VTWhnFgRvC65oY3vAEuje262lKKYLTsJRVWWo7SaqNBiFZzdpc7MxqtZfyMvN55NzH8mjFNanTJ4DBoj2FOqqGS1YK2_wUZBc67Vmbw1R64DnPM7SVFRZ4uNIx1mXr5QM13I_ZqE3MMcVH_ZpqBdgeYGFKKaB8RUNv41Fo9xqe28SmgKn-QS9_tlRo36ckFP0XthkMEFzsB5sn_dhhVMg69wd5FNJPqgztE8n5PYvIiOKOHe1wOU_wFpTfSJA
CitedBy_id crossref_primary_10_1109_TPAMI_2012_129
crossref_primary_10_7554_eLife_86892_3
crossref_primary_10_1002_hbm_26763
crossref_primary_10_3389_fncom_2014_00131
crossref_primary_10_1214_23_BA1377
crossref_primary_10_1016_j_ijar_2013_03_013
crossref_primary_10_1016_j_neuroimage_2009_12_120
crossref_primary_10_1016_j_compbiomed_2011_04_011
crossref_primary_10_1002_mp_13522
crossref_primary_10_1109_JSTSP_2008_2007816
crossref_primary_10_1176_appi_ajp_2014_14030382
crossref_primary_10_5691_jjb_33_145
crossref_primary_10_7554_eLife_86892
crossref_primary_10_1016_j_neulet_2012_02_008
crossref_primary_10_1007_s12021_020_09472_w
crossref_primary_10_3389_fncom_2014_00125
crossref_primary_10_1007_s10827_020_00751_8
crossref_primary_10_1016_j_neuroimage_2009_11_037
crossref_primary_10_1038_s41586_021_04129_3
crossref_primary_10_1162_NECO_a_00690
crossref_primary_10_1186_s12888_018_1675_1
crossref_primary_10_1016_j_nicl_2021_102676
crossref_primary_10_3390_e26030228
crossref_primary_10_3390_a11050070
crossref_primary_10_1089_cap_2012_0054
crossref_primary_10_1002_wics_1339
crossref_primary_10_1089_brain_2011_0045
crossref_primary_10_3389_fncom_2014_00118
crossref_primary_10_1016_j_neuroimage_2009_03_025
crossref_primary_10_1186_1471_2202_10_75
crossref_primary_10_1089_brain_2021_0049
crossref_primary_10_1080_13803395_2012_666227
crossref_primary_10_1038_nn_4110
crossref_primary_10_1192_j_eurpsy_2022_23
crossref_primary_10_1016_j_compbiomed_2023_107747
crossref_primary_10_1016_j_artmed_2020_101879
crossref_primary_10_1371_journal_pone_0298651
crossref_primary_10_1016_j_neuroimage_2012_08_023
crossref_primary_10_1016_j_neuroimage_2024_120684
crossref_primary_10_1016_j_neuroscience_2008_06_053
crossref_primary_10_1016_j_patcog_2024_110687
crossref_primary_10_1109_TBME_2013_2296778
crossref_primary_10_1109_ACCESS_2019_2937581
crossref_primary_10_1016_j_neuroimage_2011_03_010
crossref_primary_10_1038_s41467_019_12756_8
crossref_primary_10_1038_s41598_024_73311_0
crossref_primary_10_1007_s11222_015_9570_9
crossref_primary_10_1007_s11229_017_1568_8
crossref_primary_10_1016_j_jspi_2018_03_004
crossref_primary_10_1371_journal_pcbi_1009006
crossref_primary_10_1111_j_1460_9568_2009_06753_x
crossref_primary_10_1007_s00415_018_9134_y
crossref_primary_10_1016_j_neuroimage_2011_03_018
crossref_primary_10_1002_hbm_23456
crossref_primary_10_3389_fnhum_2015_00081
crossref_primary_10_1109_TBME_2014_2359211
Cites_doi 10.1007/BF00253633
10.1073/pnas.231499798
10.1016/j.neuroimage.2007.06.003
10.1002/hbm.460020107
10.1111/1467-9868.00346
10.1212/WNL.17.5.427
10.1111/j.1460-9568.2006.04677.x
10.1155/2000/421719
10.1006/nimg.2002.1231
10.1016/S1053-8119(03)00160-5
10.1016/S1053-8119(03)00059-4
10.1063/1.1699114
10.1098/rstb.2005.1642
10.1016/S1364-6613(02)01976-9
10.1163/156856897X00357
10.1016/S1053-8119(03)00202-7
10.1002/hbm.20259
10.1163/156856897X00366
10.1214/aos/1176344136
10.1016/j.neuroimage.2003.08.018
10.1006/nimg.2001.0954
10.1002/mrm.20893
10.1016/j.neuroimage.2003.09.043
10.1109/TMI.2004.837791
10.2307/2529264
10.1016/j.neuroimage.2006.01.031
10.1002/hbm.460020104
10.1016/j.neuroimage.2006.05.035
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright Elsevier Limited Jun 1, 2008
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: Copyright Elsevier Limited Jun 1, 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
DOI 10.1016/j.neuroimage.2008.01.068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 407
ExternalDocumentID 3244752731
18406629
10_1016_j_neuroimage_2008_01_068
S1053811908001195
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
ID FETCH-LOGICAL-c554t-4c2302c53443c3737036cf994f11e0ca6d615f6f3e6faca0558a32b957caeff23
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Fri Sep 05 09:49:22 EDT 2025
Fri Sep 05 05:30:32 EDT 2025
Wed Aug 13 08:08:11 EDT 2025
Mon Jul 21 05:55:11 EDT 2025
Tue Jul 01 02:14:20 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Tue Aug 26 17:33:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Group analysis
Parkinson's disease
Functional magnetic resonance imaging (fMRI)
Dynamic Bayesian network
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-4c2302c53443c3737036cf994f11e0ca6d615f6f3e6faca0558a32b957caeff23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18406629
PQID 1506807229
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_71624518
proquest_miscellaneous_21033986
proquest_journals_1506807229
pubmed_primary_18406629
crossref_primary_10_1016_j_neuroimage_2008_01_068
crossref_citationtrail_10_1016_j_neuroimage_2008_01_068
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2008_01_068
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2008_01_068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2008
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Turner, Grafton, McIntosh, DeLong, Hoffman (bib34) 2003; 19
Kim, Zhu, Chang, Bentler, Ernst (bib12) 2007; 28
Liao, Krolik, McKeown (bib16) 2005; 24
Niculescu-Mizil, Caruana (bib22) 2007
Vandenbroucke, Goekoop, Duschek, Netelenbos, Kuijer, Barkhof, Scheltens, Rombouts (bib35) 2004; 21
Pope, Praamstra, Wing (bib25) 2006; 23
Sugihara, Kaminaga, Sugishita (bib32) 2006; 32
Brainard (bib1) 1997; 10
Harrison, Penny, Friston (bib8) 2003; 19
Friston (bib4) 1994; 2
Murphy, K. P., 2002. Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley.
Yang, Chang (bib36) 2002; 32
Storey (bib31) 2002; 64
Liao, McKeown, Krolik (bib17) 2006; 55
Mechelli, Penny, Price, Gitelman, Friston (bib19) 2002; 17
Pelli (bib23) 1997; 10
Goncalves, Hall, Johnsrude, Haggard (bib6) 2001; 14
Kherif, Poline, Meriaux, Benali, Flandin, Brett (bib11) 2003; 20
McIntosh, Gonzalez-Lima (bib18) 1994; 2
Schwarz (bib29) 1978; 6
Price, Friston (bib26) 2002; 6
Rajapakse, Zhou (bib27) 2007; 37
Li, Wang, McKeown (bib15) 2007
Zheng, Rajapakse (bib37) 2006; 31
Rorden, Brett (bib28) 2000; 12
Harrison, Friston (bib7) 2004
Lauritzen, S.L., 1996b. Graphical Models. Clarendon Press, Oxford University Press, Ch. 3.2.2, pp. 46–52.
Hoehn, Yahr (bib9) 1967; 17
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib20) 1953; 21
Stelmach, Teasdale, Phillips, Worringham (bib30) 1989; 76
Edelman, Gally (bib3) 2001; 98
Friston, Harrison, Penny (bib5) 2003; 19
(bib10) 2002
Penny, Ghahramani, Friston (bib24) 2005; 360
Talairach, Tournoux (bib33) 1988
Corbeil, Searle (bib2) 1976; 32
Lauritzen, S. L., 1996a. Graphical Models. Clarendon Press, Oxford University Press, Oxford, New York.
Stelmach (10.1016/j.neuroimage.2008.01.068_bib30) 1989; 76
Metropolis (10.1016/j.neuroimage.2008.01.068_bib20) 1953; 21
Goncalves (10.1016/j.neuroimage.2008.01.068_bib6) 2001; 14
Zheng (10.1016/j.neuroimage.2008.01.068_bib37) 2006; 31
Pelli (10.1016/j.neuroimage.2008.01.068_bib23) 1997; 10
Penny (10.1016/j.neuroimage.2008.01.068_bib24) 2005; 360
Mechelli (10.1016/j.neuroimage.2008.01.068_bib19) 2002; 17
Harrison (10.1016/j.neuroimage.2008.01.068_bib7) 2004
Hoehn (10.1016/j.neuroimage.2008.01.068_bib9) 1967; 17
Niculescu-Mizil (10.1016/j.neuroimage.2008.01.068_bib22) 2007
Friston (10.1016/j.neuroimage.2008.01.068_bib4) 1994; 2
Rorden (10.1016/j.neuroimage.2008.01.068_bib28) 2000; 12
Li (10.1016/j.neuroimage.2008.01.068_bib15) 2007
Talairach (10.1016/j.neuroimage.2008.01.068_bib33) 1988
Friston (10.1016/j.neuroimage.2008.01.068_bib5) 2003; 19
Liao (10.1016/j.neuroimage.2008.01.068_bib17) 2006; 55
10.1016/j.neuroimage.2008.01.068_bib21
Schwarz (10.1016/j.neuroimage.2008.01.068_bib29) 1978; 6
Kim (10.1016/j.neuroimage.2008.01.068_bib12) 2007; 28
Pope (10.1016/j.neuroimage.2008.01.068_bib25) 2006; 23
Turner (10.1016/j.neuroimage.2008.01.068_bib34) 2003; 19
Storey (10.1016/j.neuroimage.2008.01.068_bib31) 2002; 64
Brainard (10.1016/j.neuroimage.2008.01.068_bib1) 1997; 10
(10.1016/j.neuroimage.2008.01.068_bib10) 2002
McIntosh (10.1016/j.neuroimage.2008.01.068_bib18) 1994; 2
Sugihara (10.1016/j.neuroimage.2008.01.068_bib32) 2006; 32
Yang (10.1016/j.neuroimage.2008.01.068_bib36) 2002; 32
Liao (10.1016/j.neuroimage.2008.01.068_bib16) 2005; 24
Edelman (10.1016/j.neuroimage.2008.01.068_bib3) 2001; 98
Rajapakse (10.1016/j.neuroimage.2008.01.068_bib27) 2007; 37
Kherif (10.1016/j.neuroimage.2008.01.068_bib11) 2003; 20
Harrison (10.1016/j.neuroimage.2008.01.068_bib8) 2003; 19
Corbeil (10.1016/j.neuroimage.2008.01.068_bib2) 1976; 32
Price (10.1016/j.neuroimage.2008.01.068_bib26) 2002; 6
Vandenbroucke (10.1016/j.neuroimage.2008.01.068_bib35) 2004; 21
10.1016/j.neuroimage.2008.01.068_bib14
10.1016/j.neuroimage.2008.01.068_bib13
References_xml – volume: 21
  start-page: 173
  year: 2004
  end-page: 180
  ident: bib35
  article-title: Interindividual differences of medial temporal lobe activation during encoding in an elderly population studied by fMRI
  publication-title: NeuroImage
– year: 2004
  ident: bib7
  article-title: Human Brain Function
– volume: 55
  start-page: 1396
  year: 2006
  end-page: 1413
  ident: bib17
  article-title: Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis
  publication-title: Magn. Reson. Med.
– volume: 360
  start-page: 983
  year: 2005
  end-page: 993
  ident: bib24
  article-title: Bilinear dynamical systems
  publication-title: Phil. Trans. R. Soc. B
– volume: 76
  start-page: 165
  year: 1989
  end-page: 172
  ident: bib30
  article-title: Force production characteristics in Parkinson's disease
  publication-title: Exp. Brain Res.
– volume: 2
  start-page: 2
  year: 1994
  end-page: 22
  ident: bib18
  article-title: Structural equation modeling and its application to network analysis in functional brain imaging
  publication-title: Hum. Brain Mapp.
– volume: 32
  start-page: 779
  year: 1976
  end-page: 791
  ident: bib2
  article-title: A comparison of variance component estimators
  publication-title: Biometrics
– volume: 17
  start-page: 427
  year: 1967
  end-page: 442
  ident: bib9
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bib20
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 163
  year: 2003
  end-page: 179
  ident: bib34
  article-title: The functional anatomy of Parkinsonian bradykinesia
  publication-title: Neuroimage
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302 (Aug.)
  ident: bib5
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 32
  start-page: 1837
  year: 2006
  end-page: 1849
  ident: bib32
  article-title: Interindividual uniformity and variety of the “writing center”: a functional MRI study
  publication-title: NeuroImage
– reference: Lauritzen, S. L., 1996a. Graphical Models. Clarendon Press, Oxford University Press, Oxford, New York.
– volume: 10
  start-page: 437
  year: 1997
  end-page: 442
  ident: bib23
  article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies
  publication-title: Spat. Vis.
– volume: 28
  start-page: 85
  year: 2007
  end-page: 93
  ident: bib12
  article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
  publication-title: Hum. Brain Mapp.
– year: 2002
  ident: bib10
  publication-title: Parkinson's Disease and Movement Disorders
– volume: 10
  start-page: 433
  year: 1997
  end-page: 436
  ident: bib1
  article-title: The psychophysics toolbox
  publication-title: Spat. Vis.
– volume: 20
  start-page: 2197
  year: 2003
  end-page: 2208
  ident: bib11
  article-title: Group analysis in functional neuroimaging: selecting subjects using similarity measures
  publication-title: NeuroImage
– volume: 64
  start-page: 479
  year: 2002
  end-page: 498
  ident: bib31
  article-title: A direct approach to false discovery rates
  publication-title: J. R. Stat. Soc., Ser. B Stat. Methodol.
– volume: 37
  start-page: 749
  year: 2007
  end-page: 760
  ident: bib27
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: NeuroImage
– reference: Lauritzen, S.L., 1996b. Graphical Models. Clarendon Press, Oxford University Press, Ch. 3.2.2, pp. 46–52.
– volume: 19
  start-page: 1477
  year: 2003
  end-page: 1491
  ident: bib8
  article-title: Multivariate autoregressive modeling of fMRI time series
  publication-title: NeuroImage
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: bib4
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
– start-page: I
  year: 2007
  end-page: 429–I–432
  ident: bib15
  article-title: A multi-subject dynamic Bayesian network (DBN) framework for brain effective connectivity
  publication-title: Acoustics, Speech and Signal Processing, 2007. IEEE International Conference on. Vol. 1
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib29
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 17
  start-page: 1459
  year: 2002
  end-page: 1469
  ident: bib19
  article-title: Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities
  publication-title: NeuroImage
– volume: 32
  start-page: 419
  year: 2002
  end-page: 428
  ident: bib36
  article-title: Comparison of score metrics for Bayesian network learning. Systems, Man and Cybernetics: Part A
  publication-title: IEEE Transactions on
– volume: 31
  start-page: 1601
  year: 2006
  end-page: 1613
  ident: bib37
  article-title: Learning functional structure from fMR images
  publication-title: NeuroImage
– volume: 6
  start-page: 416
  year: 2002
  end-page: 421
  ident: bib26
  article-title: Degeneracy and cognitive anatomy
  publication-title: Trends Cogn. Sci.
– reference: Murphy, K. P., 2002. Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley.
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  ident: bib28
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
– year: 2007
  ident: bib22
  article-title: Inductive transfer for Bayesian network structure learning
  publication-title: Proceedings of the 11th International Conference on AI and Statistics (AISTATS '07)
– year: 1988
  ident: bib33
  article-title: Co-Planar Stereotaxic Atlas of the Human Brain
– volume: 14
  start-page: 1353
  year: 2001
  end-page: 1360 (Dec.)
  ident: bib6
  article-title: Can meaningful effective connectivities be obtained between auditory cortical regions?
  publication-title: NeuroImage
– volume: 24
  start-page: 29
  year: 2005
  end-page: 44
  ident: bib16
  article-title: An information-theoretic criterion for intrasubject alignment of fMRI time series: motion corrected independent component analysis
  publication-title: IEEE Trans. Med. Imag.
– volume: 23
  start-page: 1643
  year: 2006
  end-page: 1650
  ident: bib25
  article-title: Force and time control in the production of rhythmic movement sequences in Parkinson's disease
  publication-title: Eur. J. Neurosci.
– volume: 98
  start-page: 13763
  year: 2001
  end-page: 13768
  ident: bib3
  article-title: Degeneracy and complexity in biological systems
  publication-title: PNAS
– year: 2002
  ident: 10.1016/j.neuroimage.2008.01.068_bib10
– ident: 10.1016/j.neuroimage.2008.01.068_bib13
– volume: 76
  start-page: 165
  issue: 1
  year: 1989
  ident: 10.1016/j.neuroimage.2008.01.068_bib30
  article-title: Force production characteristics in Parkinson's disease
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00253633
– volume: 98
  start-page: 13763
  issue: 24
  year: 2001
  ident: 10.1016/j.neuroimage.2008.01.068_bib3
  article-title: Degeneracy and complexity in biological systems
  publication-title: PNAS
  doi: 10.1073/pnas.231499798
– volume: 37
  start-page: 749
  year: 2007
  ident: 10.1016/j.neuroimage.2008.01.068_bib27
  article-title: Learning effective brain connectivity with dynamic Bayesian networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.003
– volume: 2
  start-page: 56
  issue: 1-2
  year: 1994
  ident: 10.1016/j.neuroimage.2008.01.068_bib4
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020107
– volume: 64
  start-page: 479
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2008.01.068_bib31
  article-title: A direct approach to false discovery rates
  publication-title: J. R. Stat. Soc., Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00346
– volume: 17
  start-page: 427
  issue: 5
  year: 1967
  ident: 10.1016/j.neuroimage.2008.01.068_bib9
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– volume: 23
  start-page: 1643
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2008.01.068_bib25
  article-title: Force and time control in the production of rhythmic movement sequences in Parkinson's disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2006.04677.x
– volume: 12
  start-page: 191
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2008.01.068_bib28
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
  doi: 10.1155/2000/421719
– volume: 17
  start-page: 1459
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2008.01.068_bib19
  article-title: Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1231
– volume: 19
  start-page: 1477
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2008.01.068_bib8
  article-title: Multivariate autoregressive modeling of fMRI time series
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00160-5
– volume: 19
  start-page: 163
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2008.01.068_bib34
  article-title: The functional anatomy of Parkinsonian bradykinesia
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00059-4
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.neuroimage.2008.01.068_bib20
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 360
  start-page: 983
  issue: 1457
  year: 2005
  ident: 10.1016/j.neuroimage.2008.01.068_bib24
  article-title: Bilinear dynamical systems
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2005.1642
– volume: 6
  start-page: 416
  issue: 10
  year: 2002
  ident: 10.1016/j.neuroimage.2008.01.068_bib26
  article-title: Degeneracy and cognitive anatomy
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(02)01976-9
– volume: 10
  start-page: 433
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2008.01.068_bib1
  article-title: The psychophysics toolbox
  publication-title: Spat. Vis.
  doi: 10.1163/156856897X00357
– volume: 19
  start-page: 1273
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2008.01.068_bib5
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 28
  start-page: 85
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2008.01.068_bib12
  article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20259
– year: 2007
  ident: 10.1016/j.neuroimage.2008.01.068_bib22
  article-title: Inductive transfer for Bayesian network structure learning
– volume: 10
  start-page: 437
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2008.01.068_bib23
  article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies
  publication-title: Spat. Vis.
  doi: 10.1163/156856897X00366
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.neuroimage.2008.01.068_bib29
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– year: 1988
  ident: 10.1016/j.neuroimage.2008.01.068_bib33
– year: 2004
  ident: 10.1016/j.neuroimage.2008.01.068_bib7
– start-page: I
  year: 2007
  ident: 10.1016/j.neuroimage.2008.01.068_bib15
  article-title: A multi-subject dynamic Bayesian network (DBN) framework for brain effective connectivity
– volume: 20
  start-page: 2197
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2008.01.068_bib11
  article-title: Group analysis in functional neuroimaging: selecting subjects using similarity measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.08.018
– volume: 14
  start-page: 1353
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2008.01.068_bib6
  article-title: Can meaningful effective connectivities be obtained between auditory cortical regions?
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0954
– volume: 55
  start-page: 1396
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2008.01.068_bib17
  article-title: Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20893
– volume: 21
  start-page: 173
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2008.01.068_bib35
  article-title: Interindividual differences of medial temporal lobe activation during encoding in an elderly population studied by fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.09.043
– volume: 32
  start-page: 419
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2008.01.068_bib36
  article-title: Comparison of score metrics for Bayesian network learning. Systems, Man and Cybernetics: Part A
  publication-title: IEEE Transactions on
– ident: 10.1016/j.neuroimage.2008.01.068_bib14
– ident: 10.1016/j.neuroimage.2008.01.068_bib21
– volume: 24
  start-page: 29
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2008.01.068_bib16
  article-title: An information-theoretic criterion for intrasubject alignment of fMRI time series: motion corrected independent component analysis
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.837791
– volume: 32
  start-page: 779
  issue: 4
  year: 1976
  ident: 10.1016/j.neuroimage.2008.01.068_bib2
  article-title: A comparison of variance component estimators
  publication-title: Biometrics
  doi: 10.2307/2529264
– volume: 31
  start-page: 1601
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2008.01.068_bib37
  article-title: Learning functional structure from fMR images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.031
– volume: 2
  start-page: 2
  year: 1994
  ident: 10.1016/j.neuroimage.2008.01.068_bib18
  article-title: Structural equation modeling and its application to network analysis in functional brain imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020104
– volume: 32
  start-page: 1837
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2008.01.068_bib32
  article-title: Interindividual uniformity and variety of the “writing center”: a functional MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.035
SSID ssj0009148
Score 2.185199
Snippet Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 398
SubjectTerms Aged
Antiparkinson Agents - therapeutic use
Bayes Theorem
Brain - drug effects
Brain - physiopathology
Dynamic Bayesian network
Female
Functional magnetic resonance imaging (fMRI)
Group analysis
Humans
Image Interpretation, Computer-Assisted - methods
Levodopa - therapeutic use
Magnetic Resonance Imaging
Male
Methods
Models, Neurological
Parkinson Disease - drug therapy
Parkinson Disease - physiopathology
Parkinson's disease
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA-lB-lFrFZdWzUHr-lOvid6qtVShS3UttBbSLIJbGlni7s9ePFv92WS2UWwsOB1Jo8JL3kfmfze7yH0AQ5VIibuiWFTQQR1njilG-KZg4TCOKP6XgSTM3V6Jb5fy-stdDzUwmRYZfX9xaf33ro-GVdtju9ns_EFZAYQbiCgtYW4LFewC533-uHvNczDUFHK4SQneXRF8xSMV88ZObsDy62oSnrYZNLVf4eox1LQPhSdPENPaw6Jj8o0d9FW7J6jJ5N6S_4CnX8pbebxZ_cr5iJJ3BWwN-773kCwwvOE0-THt4_4CIdVJ8L8tK_yIK5SleDSYHqxh65Ovl4en5LaOoEEyA-WRAQ4WrAguRA8cM0zzVZIxohEaWyCU1PIZJJKPKrkgmukbB1n3kgdXEyJ8Zdou5t38TXCvvHSMc_1VBjBNXXaRWmmyqSW-dTIEdKDtmyovOK5vcWtHQBkN3at59r2klrQ8wjRleR94dbYQMYMC2KH2lHwdhYCwAayn1ayf-2xDaUPhvW31c4XNvMzto1mzIzQ-9VrsNB87eK6OH9YWDhUc25a9fiIzOIlJIVPvCr7aq0OOH8rxcyb_5r6PtopMJf88-gAbS9_PsS3kEst_bveWP4ATTIdTA
  priority: 102
  providerName: Elsevier
Title Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811908001195
https://dx.doi.org/10.1016/j.neuroimage.2008.01.068
https://www.ncbi.nlm.nih.gov/pubmed/18406629
https://www.proquest.com/docview/1506807229
https://www.proquest.com/docview/21033986
https://www.proquest.com/docview/71624518
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoKyEuiDeBEnzg6rJ-r-GA0pdSIFGJqJSbZXttCQSbQtJDL_3t2GtvcqFVTpZ2PbJke8Yz9sz3AfAuBlXMB2qRIg1DDBuLjJAVssREh0IZJTougslUjC_Y5zmflwu3ZUmr7G1iZ6ibhUt35O8TEl5dSULUp8s_KLFGpdfVQqGxA_Y66LK4n-VcbkB3MculcJyiOnYomTw5v6vDi_zxO2ptyajEB1UCXP3_8XSb-9kdQ6ePwMPiP8JRXvDH4J5vn4D7k_JC_hR8O84U8_DQXPtUIAnbnOgNO86beFDBRYBhMjv7AEfQrVkI09euwgOZAlMCM7n08hm4OD35fjRGhTYBuegbrBBzMawgjlPGqKOSJogtF5RiAWNfOSOa6MUEEagXwThTcV4bSqzi0hkfAqHPwW67aP1LAG1luSGWyoYpRiU20niuGqFCTWyo-ADIfra0K5jiidril-6Tx37qzTwXykus4zwPAF5LXmZcjS1kVL8guq8bjZZOR-O_hezHtWzxLbLPsKX0fr_-uuj4Um925AC8Xf-O2pmeXEzrF1dLHQNqSlUtbu-RELwYx3GIF3lfbaYjxt5CEPXq7sFfgwc5hyXdDO2D3dXfK_8mOkorOwQ7Bzd42OnEEOyNjmZfz1N79mU8je3hyfR89g8bixeh
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqQRcEG8ChfoAR8P6uWsQQi1tldAmgqqVejNery2BYFNIKtQ_xW_EXnuTC0W59LrekaWxPQ975vsAXoSkijvPaqxowzEnpsZGlgWuqQkBhTJKdlwEk6kcnfKPZ-JsA_70vTCxrLK3iZ2hbmY23pG_jkh4VVFSqt6f_8SRNSq-rvYUGmlbHLrL3yFlm78b74X1fUnpwf7JhxHOrALYBte5wNyGqJtawThnlpUsIlBZrxT3hLjCGtkEJ--lZ056Y00hRGUYrZUorXHeR6CDYPI3eexoHcDm7v700_EK5pfw1HwnGK4IUbl2KFWUdQiVX38EO5FrOMmrIkK8_tshXhXwdo7v4A7czhEr2klb7C5suPYe3JjkN_n78HkvkdqjXXPpYksmalNpOepYdoJrRDOP_OR4_AbtILvkPYxfu54SbDIwCkp01vMHcHotKn0Ig3bWuseA6qIWhtasbLjirCSmNE6oRipf0doXYghlry1tM4p5JNP4rvtytW96pedMskl00PMQyFLyPCF5rCGj-gXRfadqsK06uJs1ZN8uZXM0k6KUNaW3-vXX2arM9eoMDGF7ORzsQXzkMa2bXcx1SOEZU5W8-o-IGcYFCVM8SvtqpY6Q7UtJ1ZP_T74NN0cnkyN9NJ4ePoVbqYIm3kttwWDx68I9C2Haon6ezwaCL9d9HP8C9PpP6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEG8ChfoAR9P1ew1CqBCihpIKEJVyM16vLRVBUkgq1L_Gr2O89iYXinLpdXdHlsae13rm-xB6CkWVCJE3xLBWEEFdQ5zSFWmYg4TCOKM6LoLJsTo8Ee-ncrqF_vSzMKmtsveJnaNu5z79I99PSHh1pRkz-7G0RXwcjl6f_SSJQSrdtPZ0GvmIHIWL31C-LV6Nh7DXzxgbvfvy9pAUhgHiIYwuifCQgTMvuRDcc80TGpWPxohIaai8Uy0E_KgiDyo67yopa8dZY6T2LsSYQA_A_V_THLIqsCU91WvAXyryGJ7kpKbUlC6i3FvWYVWe_gCPUbo56fMqgb3-OzRelvp2IXB0E90ouSs-yIftFtoKs9toZ1Ju5--gT8NMb4_fuIuQhjPxLDeZ445vB4IknkccJ5_HL_AB9isGxPS0my4hrkCk4ExsvbiLTq5EoffQ9mw-Cw8QbqpGOtZw3QojuKZOuyBNq0ysWRMrOUC615b1Bc880Wp8t33j2je71nOh26QW9DxAdCV5ljE9NpAx_YbYfmYVvKyFwLOB7MuVbMlrcr6yofRuv_-2-JeFXVvDAO2tXoNnSNc9bhbm5wsLxTznplaXf5HQw4SksMT9fK7W6oC6XylmHv5_8T20A0ZoP4yPjx6h67mVJv2g2kXby1_n4THka8vmSWcYGH29akv8C7b8UrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+network+modeling+of+fMRI%3A+A+comparison+of+group-analysis+methods&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Li%2C+Junning&rft.au=Wang%2C+Z.+Jane&rft.au=Palmer%2C+Samantha+J.&rft.au=McKeown%2C+Martin+J.&rft.date=2008-06-01&rft.issn=1053-8119&rft.volume=41&rft.issue=2&rft.spage=398&rft.epage=407&rft_id=info:doi/10.1016%2Fj.neuroimage.2008.01.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2008_01_068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon