Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods

Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN mode...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 41; no. 2; pp. 398 - 407
Main Authors Li, Junning, Wang, Z. Jane, Palmer, Samantha J., McKeown, Martin J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2008
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2008.01.068

Cover

Loading…
More Information
Summary:Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the “virtual-typical- subject” (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the “individual-structure” (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the “common-structure” (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2008.01.068