Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation

The adverse conditions of acidification on sensitive marine organisms have led to the investigation of bioremediation methods as a way to abate local acidification. This phytoremediation, by macrophytes, is expected to reduce the severity of acidification in nearshore habitats on short timescales. C...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 13500
Main Authors Miller, Cale A., Kelley, Amanda L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The adverse conditions of acidification on sensitive marine organisms have led to the investigation of bioremediation methods as a way to abate local acidification. This phytoremediation, by macrophytes, is expected to reduce the severity of acidification in nearshore habitats on short timescales. Characterizing the efficacy of phytoremediation can be challenging as residence time, tidal mixing, freshwater input, and a limited capacity to fully constrain the carbonate system can lead to erroneous conclusions. Here, we present in situ observations of carbonate chemistry relationships to seagrass habitats by comparing dense (DG), patchy (PG), and no grass (NG) Zostera marina pools in the high intertidal experiencing intermittent flooding. High-frequency measurements of pH, alkalinity (TA), and total-CO 2 elucidate extreme diel cyclicity in all parameters. The DG pool displayed frequent decoupling between pH and aragonite saturation state (Ω arg ) suggesting pH-based inferences of acidification remediation by seagrass can be misinterpreted as pH and Ω arg can be independent stressors for some bivalves. Estimates show the DG pool had an integrated ΔTA of 550 μmol kg −1 over a 12 h period, which is ~ 60% > the PG and NG pools. We conclude habitats with mixed photosynthesizers (i.e., PG pool) result in less decoupling between pH and Ω arg .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-92771-2