Winter Storms in the Central Himalayas

Based on observations from a hydrometeorological network on the eastern slopes of the Annapurna Range, nearly all the annual precipitation at low elevations (< 2000 m MSL) in Nepal is in liquid form, even during the winter. However, high elevations (> 3000 m MSL) can receive up to 40% of their...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 82; no. 3; pp. 829 - 844
Main Authors LANG, Timothy J, BARROS, Ana P
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 01.01.2004
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on observations from a hydrometeorological network on the eastern slopes of the Annapurna Range, nearly all the annual precipitation at low elevations (< 2000 m MSL) in Nepal is in liquid form, even during the winter. However, high elevations (> 3000 m MSL) can receive up to 40% of their annual precipitation as snowfall during the winter, with the highest altitude stations (∼4000 m MSL and above) having the most total winter precipitation (which can exceed 100 cm). Significant snowstorms are associated with terrain-locked low-pressure systems that form when an upper-level disturbance passes over the notch formed by the Himalayas and Hindu Kush mountains (the so-called Western Disturbances), causing upper-level SW flow over central Nepal and orographically forced precipitation. Based on these results, a 30-year (1973-2002) climatology of these notch depressions is developed and reveals that significant interannual variability in central Himalayan winter storms exists. Weak but statistically significant correlation between notch depressions and the Polar/Eurasia teleconnection pattern was found, suggesting that the strength of the circumpolar vortex may affect the number of depressions passing through the Himalayan region. A typical snow event (11 February 2000) was the subject of an observational and modeling case study. Local precipitation (snow and rain) and other meteorological observations, as well as satellite (Meteosat-5 and TRMM) and NCEP/NCAR Reanalysis data were used, along with a cloud-resolving model with realistic topography. This study shows that significant wintertime precipitation only occurs in the central Himalayas when the large-scale flow evolves to a favorable geometry with respect to the mountains.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0026-1165
2186-9057
DOI:10.2151/jmsj.2004.829