A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers

Solid-state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next-generation flexible Li metal batteries with enhanced safety and stability. Nevertheless, the brittleness and inferior room temperature conductivity are major obstacles for practical applications...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 8; pp. 4157 - 4161
Main Authors He, Kun, Xie, Pu, Zu, Chengkui, Wang, Yanhang, Li, Baoying, Han, Bin, Rong, Min Zhi, Zhang, Ming Qiu
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 31.01.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solid-state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next-generation flexible Li metal batteries with enhanced safety and stability. Nevertheless, the brittleness and inferior room temperature conductivity are major obstacles for practical applications. Herein, for the first time, we have fabricated a flexible lithium ion conductive glass-ceramic fiber by using a melt-spun homogeneous NASICON-type structured Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP) glass melt and annealed at 825 °C. The annealed samples exhibited a higher lithium ion conductivity than the air-quenched sample due to the presence of a well-crystallized crystal grain in the annealed sample. Meanwhile, the ionic conductivity has shown an inverse relationship with the diameter of annealed LAGP glass-ceramic fibers. The results revealed that the annealed glass-ceramic fiber, with a diameter of 10 μm, resulted in lithium ion conductivity of 8.8 × 10 3 S cm −1 at room temperature. A flexible lithium ion conductive Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass-ceramic fiber was prepared by melt-spun method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/c8ra08401g