Discovery of MRSA active antibiotics using primary sequence from the human microbiome
The synthetic bioinformatic natural products (syn-BNPs) approach identifies putative natural products that are validated directly by independent synthesis. Its application led to the identification of humimycins, non-ribosomal peptides that have antimicrobial activity in mice. Here we present a natu...
Saved in:
Published in | Nature chemical biology Vol. 12; no. 12; pp. 1004 - 1006 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.12.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The synthetic bioinformatic natural products (syn-BNPs) approach identifies putative natural products that are validated directly by independent synthesis. Its application led to the identification of humimycins, non-ribosomal peptides that have antimicrobial activity in mice.
Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant
Staphylococcus aureus
in mice, potentially providing a new treatment regimen. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.2207 |