Role of multidrug resistance protein 2 (MRP2) in glutathione‐bimane efflux from Caco‐2 and rat renal proximal tubule cells

The multidrug resistance protein 2 (MRP2) has been shown to play an important role in the transport of glutathione conjugates in the liver. Its importance in renal excretion, however, is still uncertain and other organic anion transporters may be involved. The objective of the present study was to c...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 134; no. 5; pp. 931 - 938
Main Authors Terlouw, Sylvie A, Masereeuw, Rosalinde, Van Den Broek, Petra H H, Notenboom, Sylvia, Russel, Frans G M
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.11.2001
Nature Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The multidrug resistance protein 2 (MRP2) has been shown to play an important role in the transport of glutathione conjugates in the liver. Its importance in renal excretion, however, is still uncertain and other organic anion transporters may be involved. The objective of the present study was to characterize glutathione conjugate efflux from rat kidney proximal tubule cells (PTC), and to determine the contribution of Mrp2. We used isolated PTC in suspension, as well as grown to monolayer density. For comparison, transport characteristics were also determined in the human intestinal epithelial cell line Caco‐2, an established model to study MRP2‐mediated transport. The cells were loaded with monochlorobimane (MCB) at 10°C. MCB enters the cells by simple diffusion and is conjugated with glutathione to form the fluorescent glutathione‐bimane (GS‐B). In primary cultures of rat PTC, no indications for a transporter‐mediated mechanism were found. The efflux of GS‐B from Caco‐2 cells and freshly isolated PTC was time‐ and temperature‐dependent. Furthermore, GS‐B transport in both models was inhibited by chlorodinitrobenzene (CDNB), with an inhibitory constant of 46.8±0.9 μM in freshly isolated PTC. In Caco‐2 cells, the inhibitory potency of CDNB was approximately 20 fold higher. Finally, efflux of GS‐B from freshly isolated PTC from Mrp2‐deficient (TR−) rats was studied. As compared to normal rat PTC, transport characteristics were not different. We conclude that in freshly isolated rat PTC glutathione conjugate excretion is mediated by other organic anion transporters rather than by Mrp2. British Journal of Pharmacology (2001) 134, 931–938; doi:10.1038/sj.bjp.0704284
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1188
1476-5381
DOI:10.1038/sj.bjp.0704284