Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks
Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehen...
Saved in:
Published in | Metabolites Vol. 13; no. 3; p. 339 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein–protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases. |
---|---|
AbstractList | Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases. Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases. |
Audience | Academic |
Author | Sun, Huiyan Yin, Chaoyi Li, Zhuopeng Gu, Yujie Song, Hongzhi Feng, Ke Cao, Yangkun |
AuthorAffiliation | 1 School of Artificial Intelligence, Jilin University, Changchun 130012, China 2 College of Computer Science and Technology, Jilin University, Changchun 130012, China |
AuthorAffiliation_xml | – name: 1 School of Artificial Intelligence, Jilin University, Changchun 130012, China – name: 2 College of Computer Science and Technology, Jilin University, Changchun 130012, China |
Author_xml | – sequence: 1 givenname: Hongzhi orcidid: 0009-0004-3097-871X surname: Song fullname: Song, Hongzhi – sequence: 2 givenname: Chaoyi surname: Yin fullname: Yin, Chaoyi – sequence: 3 givenname: Zhuopeng surname: Li fullname: Li, Zhuopeng – sequence: 4 givenname: Ke surname: Feng fullname: Feng, Ke – sequence: 5 givenname: Yangkun orcidid: 0000-0001-7240-5486 surname: Cao fullname: Cao, Yangkun – sequence: 6 givenname: Yujie surname: Gu fullname: Gu, Yujie – sequence: 7 givenname: Huiyan orcidid: 0000-0002-4664-7147 surname: Sun fullname: Sun, Huiyan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36984779$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vEzEQhi1UREvolSNaiUsvKfb6Y9cnVKUQIhW4wNnyeseJw8YO3t1W_fdMmn4Fgecwq_Ez7_q15zU5iikCIW8ZPedc0w8bGGyTGKcYXL8gJ2XJ6inTtT569n1MTvt-TXEpKivKXpFjrnQtqkqfELNoIQ7BB2eHkGKRfDGz0UEuLnO4xjSHCH3R3BaLOMAyIxWXxdexQ3oTXF9c2sEWN2FYFfNst6viG4zZdpiGm5R_9W_IS2-7Hk7v84T8_Pzpx-zL9Or7fDG7uJo6Kcth2mquPONOOW2FVzVtFWs9lNJpJoS0nKraQsnAV6yWFBrtlYa60c5bSlvBJ2Sx122TXZttDhubb02ywdwVUl4am4fgOjC1L8G2SlAhQDBV1cJKIWsvW45lBaj1ca-1HZsNtA4vCC0diB7uxLAyy3RtGKWylJKhwtm9Qk6_R-gHswm9g66zEdLYm7LSpUQWn21C3v-FrtOYI97VjsLjUVGxJ2pp0UGIPuGP3U7UXFSCVwpDI3X-DwqjBXwrnB0fsH7Q8O6500eLD_OBgNgDLqe-z-CNC8PdpKBy6NCx2U2iOZzEp4M8tj0o_6fhD0qb3zo |
CitedBy_id | crossref_primary_10_1371_journal_pcbi_1012400 crossref_primary_10_20935_AcadBiol7325 crossref_primary_10_3390_metabo14050258 crossref_primary_10_3390_cancers15245858 crossref_primary_10_1111_jcmm_70351 crossref_primary_10_3390_biology12071033 crossref_primary_10_3390_agronomy13061477 |
Cites_doi | 10.1099/0022-1317-78-4-879 10.14778/2904121.2904125 10.1007/s10911-008-9079-3 10.1371/journal.pone.0077945 10.1038/s41419-021-04460-7 10.1073/pnas.1616440113 10.1038/s41467-021-24841-y 10.1016/j.gene.2019.144223 10.2147/OTT.S208060 10.1016/S1359-6349(08)71197-2 10.2174/2212796814999200728185759 10.1186/s12943-019-1033-z 10.1186/s12935-016-0291-8 10.1073/pnas.2202157119 10.3109/08977194.2014.982276 10.1109/CVPR.2019.00943 10.1093/bioinformatics/btr357 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G 10.1093/nar/gkr952 10.1007/BF00994018 10.21203/rs.3.rs-25296/v1 10.1016/j.mcp.2017.04.004 10.1038/s41568-018-0060-1 10.1038/nmeth.3440 10.1186/s12859-018-2040-6 10.1145/3534678.3539418 10.1038/s42256-021-00325-y 10.1016/j.cell.2018.02.060 10.1186/s13045-020-00937-8 10.1093/bioinformatics/bty232 10.12659/MSM.929558 10.1111/cas.15157 10.1038/s41419-018-1258-6 10.1155/2016/5128720 10.1016/j.cell.2016.12.013 10.1007/s11010-020-03950-0 10.1101/cshperspect.a019505 10.1186/gb-2012-13-12-r124 10.1038/nature08658 10.1007/978-3-030-57077-4_10 10.1093/nar/gku1204 10.1126/science.1235122 10.1038/nature10983 10.1038/nrc3447 10.1109/TITS.2020.3026025 10.1097/MD.0000000000024898 10.1186/s12943-020-01259-6 10.1016/j.bbrc.2021.01.017 10.1038/ng.2764 10.1038/s41598-017-03021-3 10.1038/nmeth.2642 10.1111/j.1471-4159.2010.07049.x 10.3389/fgene.2022.884028 10.1101/015883 10.1038/nature12213 10.1093/nar/gku1393 10.17305/bjbms.2018.2756 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/metabo13030339 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences ProQuest Biological Science Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-1989 |
ExternalDocumentID | oai_doaj_org_article_8f2ead64044e416784a5458f5d3ad66e PMC10052551 A743767679 36984779 10_3390_metabo13030339 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Special Project for Medical and Sanitary Talent of Jilin Province grantid: JLSWSRCZZX2021- 039 – fundername: National Natural Science Foundation of China grantid: 61902144 – fundername: Special Project for Medical and Sanitary Talent of Jilin Province grantid: JLSWSRCZZX2021-039 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c552t-d936f13c6c9a4f680d61dfe25c91445a3068ae21ef71850eb9f69e8b9cfa00d43 |
IEDL.DBID | M48 |
ISSN | 2218-1989 |
IngestDate | Wed Aug 27 01:22:03 EDT 2025 Thu Aug 21 18:38:02 EDT 2025 Fri Jul 11 08:32:05 EDT 2025 Fri Jul 25 11:57:42 EDT 2025 Tue Jun 17 22:08:11 EDT 2025 Tue Jun 10 21:07:34 EDT 2025 Thu Jan 02 22:52:09 EST 2025 Tue Jul 01 00:44:19 EDT 2025 Thu Apr 24 22:49:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cancer driver gene PPI network multiomics data graph neural network biomarker |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-d936f13c6c9a4f680d61dfe25c91445a3068ae21ef71850eb9f69e8b9cfa00d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0009-0004-3097-871X 0000-0001-7240-5486 0000-0002-4664-7147 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo13030339 |
PMID | 36984779 |
PQID | 2791670471 |
PQPubID | 2032362 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f2ead64044e416784a5458f5d3ad66e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10052551 proquest_miscellaneous_2792505203 proquest_journals_2791670471 gale_infotracmisc_A743767679 gale_infotracacademiconefile_A743767679 pubmed_primary_36984779 crossref_citationtrail_10_3390_metabo13030339 crossref_primary_10_3390_metabo13030339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230224 |
PublicationDateYYYYMMDD | 2023-02-24 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Metabolites |
PublicationTitleAlternate | Metabolites |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Sondka (ref_43) 2018; 18 ref_14 ref_58 ref_13 Breitkreutz (ref_28) 2015; 43 ref_57 ref_56 ref_11 ref_55 ref_53 Tokheim (ref_27) 2016; 113 ref_52 Weinstein (ref_21) 2013; 45 Budach (ref_8) 2021; 3 ref_19 ref_18 ref_16 Sontag (ref_54) 2010; 115 ref_15 ref_59 Kumar (ref_42) 2021; 15 Sucularli (ref_36) 2017; 34 ref_61 ref_60 Zhu (ref_17) 2020; 33 Craene (ref_44) 2013; 13 Gnauck (ref_47) 1997; 78 ref_62 Cortes (ref_32) 2004; 20 Adzhubei (ref_40) 2013; 76 ref_26 Wensheng (ref_4) 2018; 34 Curtis (ref_51) 2012; 486 Bradner (ref_10) 2017; 168 Vogelstein (ref_3) 2013; 339 Kilpinen (ref_45) 2008; 13 ref_34 ref_33 Creixell (ref_12) 2015; 12 Janes (ref_63) 2014; 32 Wong (ref_29) 2011; 27 ref_31 ref_30 ref_39 Tamborero (ref_22) 2013; 10 ref_38 Hamosh (ref_23) 2000; 15 Lo (ref_35) 2021; 541 Pleasance (ref_25) 2010; 463 Pendino (ref_24) 2012; 40 Liu (ref_20) 2022; 23 Chen (ref_46) 2019; 18 ref_1 ref_2 Zhou (ref_64) 2019; 12 ref_49 ref_48 Lin (ref_37) 2021; 476 ref_5 ref_7 Lawrence (ref_9) 2013; 499 ref_6 Bailey (ref_41) 2018; 173 |
References_xml | – volume: 78 start-page: 879 year: 1997 ident: ref_47 article-title: A cis-acting element 7 bp upstream of the ESF-1-binding motif is involved in E1A 13S autoregulation of the adenovirus 12 TS2 promoter publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-78-4-879 – ident: ref_31 doi: 10.14778/2904121.2904125 – volume: 13 start-page: 259 year: 2008 ident: ref_45 article-title: Role of ErbB4 in breast cancer publication-title: J. Mammary Gland. Biol. Neoplasia doi: 10.1007/s10911-008-9079-3 – ident: ref_5 doi: 10.1371/journal.pone.0077945 – ident: ref_52 doi: 10.1038/s41419-021-04460-7 – volume: 113 start-page: 14330 year: 2016 ident: ref_27 article-title: Evaluating the evaluation of cancer driver genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1616440113 – ident: ref_16 – ident: ref_60 doi: 10.1038/s41467-021-24841-y – ident: ref_50 doi: 10.1016/j.gene.2019.144223 – volume: 12 start-page: 6001 year: 2019 ident: ref_64 article-title: The role of PEG3 in the occurrence and prognosis of colon cancer publication-title: OncoTargets Ther. doi: 10.2147/OTT.S208060 – ident: ref_2 doi: 10.1016/S1359-6349(08)71197-2 – volume: 15 start-page: 69 year: 2021 ident: ref_42 article-title: Understanding Molecular Process and Chemotherapeutics for the Management of Breast Cancer publication-title: Curr. Chem. Biol. doi: 10.2174/2212796814999200728185759 – volume: 18 start-page: 1285 year: 2019 ident: ref_46 article-title: The role of m6A RNA methylation in human cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1033-z – ident: ref_59 doi: 10.1186/s12935-016-0291-8 – ident: ref_1 doi: 10.1073/pnas.2202157119 – volume: 32 start-page: 176 year: 2014 ident: ref_63 article-title: EphA3 biology and cancer publication-title: Growth Factors doi: 10.3109/08977194.2014.982276 – ident: ref_15 doi: 10.1109/CVPR.2019.00943 – volume: 27 start-page: 2147 year: 2011 ident: ref_29 article-title: CHASM and SNVBox: Toolkit for detecting biologically important single nucleotide mutations in cancer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr357 – volume: 33 start-page: 7793 year: 2020 ident: ref_17 article-title: Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 57 year: 2000 ident: ref_23 article-title: Online Mendelian Inheritance In Man (OMIM) publication-title: Hum. Mutat. doi: 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G – volume: 40 start-page: D978 year: 2012 ident: ref_24 article-title: Network of Cancer Genes (NCG 3.0): Integration and analysis of genetic and network properties of cancer genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr952 – volume: 20 start-page: 273 year: 2004 ident: ref_32 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_49 doi: 10.21203/rs.3.rs-25296/v1 – volume: 34 start-page: 21 year: 2017 ident: ref_36 article-title: Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H1 publication-title: Mol. Cell. Probes doi: 10.1016/j.mcp.2017.04.004 – volume: 18 start-page: 696 year: 2018 ident: ref_43 article-title: The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0060-1 – volume: 12 start-page: 615 year: 2015 ident: ref_12 article-title: Pathway and network analysis of cancer genomes publication-title: Nat. Methods doi: 10.1038/nmeth.3440 – ident: ref_33 doi: 10.1186/s12859-018-2040-6 – ident: ref_18 doi: 10.1145/3534678.3539418 – volume: 3 start-page: 513 year: 2021 ident: ref_8 article-title: Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00325-y – ident: ref_7 – ident: ref_30 – volume: 173 start-page: 371 year: 2018 ident: ref_41 article-title: Comprehensive characterization of cancer driver genes and mutations publication-title: Cell doi: 10.1016/j.cell.2018.02.060 – ident: ref_55 doi: 10.1186/s13045-020-00937-8 – volume: 34 start-page: i404 year: 2018 ident: ref_4 article-title: Driver gene mutations based clustering of tumors: Methods and applications publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty232 – ident: ref_56 doi: 10.12659/MSM.929558 – ident: ref_57 doi: 10.1111/cas.15157 – ident: ref_14 – volume: 76 start-page: 7 year: 2013 ident: ref_40 article-title: Predicting functional effect of human missense mutations using PolyPhen-2 publication-title: Curr. Protoc. Hum. Genet. – ident: ref_34 doi: 10.1038/s41419-018-1258-6 – ident: ref_58 doi: 10.1155/2016/5128720 – volume: 168 start-page: 629 year: 2017 ident: ref_10 article-title: Transcriptional Addiction in Cancer publication-title: Cell doi: 10.1016/j.cell.2016.12.013 – volume: 476 start-page: 853 year: 2021 ident: ref_37 article-title: Methylation of RILP in lung cancer promotes tumor cell proliferation and invasion publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-020-03950-0 – ident: ref_11 doi: 10.1101/cshperspect.a019505 – ident: ref_6 doi: 10.1186/gb-2012-13-12-r124 – volume: 463 start-page: 191 year: 2010 ident: ref_25 article-title: A comprehensive catalogue of somatic mutations from a human cancer genome publication-title: Nature doi: 10.1038/nature08658 – ident: ref_26 doi: 10.1007/978-3-030-57077-4_10 – volume: 43 start-page: D470 year: 2015 ident: ref_28 article-title: The BioGRID interaction database: 2015 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1204 – volume: 339 start-page: 1546 year: 2013 ident: ref_3 article-title: [Special Issue Review] Cancer Genome Landscapes publication-title: Science doi: 10.1126/science.1235122 – volume: 486 start-page: 346 year: 2012 ident: ref_51 article-title: The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 13 start-page: 97 year: 2013 ident: ref_44 article-title: Regulatory networks defining EMT during cancer initiation and progression publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3447 – volume: 23 start-page: 1755 year: 2022 ident: ref_20 article-title: GraphSAGE-Based Traffic Speed Forecasting for Segment Network with Sparse Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3026025 – ident: ref_61 doi: 10.1097/MD.0000000000024898 – ident: ref_62 doi: 10.1186/s12943-020-01259-6 – volume: 541 start-page: 70 year: 2021 ident: ref_35 article-title: Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2021.01.017 – volume: 45 start-page: 1113 year: 2013 ident: ref_21 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat. Genet. doi: 10.1038/ng.2764 – ident: ref_48 doi: 10.1038/s41598-017-03021-3 – ident: ref_19 – volume: 10 start-page: 1081 year: 2013 ident: ref_22 article-title: IntOGen-mutations identifies cancer drivers across tumor types publication-title: Nat. Methods doi: 10.1038/nmeth.2642 – volume: 115 start-page: 1455 year: 2010 ident: ref_54 article-title: Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2010.07049.x – ident: ref_13 doi: 10.3389/fgene.2022.884028 – ident: ref_38 doi: 10.1101/015883 – volume: 499 start-page: 214 year: 2013 ident: ref_9 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 – ident: ref_39 doi: 10.1093/nar/gku1393 – ident: ref_53 doi: 10.17305/bjbms.2018.2756 |
SSID | ssj0000605701 |
Score | 2.279482 |
Snippet | Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 339 |
SubjectTerms | Biological analysis biomarker Cancer cancer driver gene Classification Computer applications Datasets DNA methylation Epigenetics Gene expression Genetic aspects Genomes graph neural network Metabolism Methods multiomics data Mutation Neural networks Oncology, Experimental PPI network Precision medicine Transcriptomics Tumors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QeXYprYyE4BThxI84xy1vJDiBxM1yHFtUKtlqNxz498zYYZUIIS5c40n8mLHnkZnPhBw0NhcB5CJDsP1M1JpnVS1dVgZuQaitZx7jHTe36vJeXD_Ih8FVX5gTluCB08Id61DAZJVgQngwHkotLP7rCbLh8Fh5PH1B5w2cqXQGgx3C8oTSyMGvP37yHawqntiM483gAy0UwfrfH8kDnTTOlxwooPPvZK23HOk0jXidrPh2g2xOW_Can17oIY25nDFIvklMqr8NfUCOzgI9QfbO6ekcEzEook0vaP1Cr3q4CNBgNBbjYpXygp7azlKM0dILRLSmiOEBnd-mpPHFFrk_P7s7ucz6qxQyJ2XRZU3FVci5U66yIijNGpU3wRfSVeBRSQuOA_ClyH0AXSWZr6ugKq_rygXLWCP4NlltZ63_Qah2unG8cdp5IazltrSB1VI76zRwtpiQ7G1pjetxxvG6i38G_A1khRmzYkKOlvT_E8LGh5R_kFNLKkTGjg9AXkwvL-YzeYHukM8G9y8MC0adyhBgcoiEZaZgUpWIYgfd7Y0oYd-5cfObpJh-3y9MUYK5XTLQ-BOyv2zGNzGXrfWz50iDdmfB-ITsJMFaTomrCswF_LgeidxozuOW9u9jRAXPMcIP9u_uV6zST_KtAGsu1u6LPbLazZ_9L7C-uvp33Giv3PAunQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHksFGQkBKeoTvyIc0LbFwWJFUJU6s1yHLsg0aRs0kP_PTOON2yE4BrPru3MezL-TMibxuYigFxkCLafiVrzrKqly8rALQi19cxjvePzSp2di08X8iIV3PrUVrmxidFQN53DGvlBUUIgUzKwpe-vf2V4axR-XU1XaNwlu2CCNSRfu4cnqy9fpyoLg2i9ZPmI1sghvz-48gO8XbTcjOMN4VveKIL2_22at3zTvG9yyxGdPiD3UwRJlyPLH5I7vn1E9pYtZM9Xt_QtjT2dsVi-R8x4DjekwhztAj1CNq_p8RobMiiiTve0vqUfE2wEeDIaD-XiaeWeHtvBUqzV0g-IbE0RywMmX43N4_1jcn568u3oLEtXKmROymLImoqrkHOnXGVFUJo1Km-CL6SrILOSFhII4E-R-wA-SzJfV0FVXteVC5axRvAnZKftWv-MUO1043jjtPNCWMttaQOrpXbWaeBwsSDZ5tUal_DG8dqLnwbyDmSFmbNiQd5N9Ncj0sY_KQ-RUxMVImTHB9360iSFMzoUoCRKMCE8BJ2lFha_EQbZcHisPEyHfDaox7AsWPV4HAE2h4hYZgmhVYlodjDd_owS9M_NhzeSYpL-9-aPtC7I62kYf4k9ba3vbiINxp8F4wvydBSsaUtcVRA24J_rmcjN9jwfaX98j-jgOVb6IQ5-_v91vSD3CojX4ul8sU92hvWNfwnx1VC_Skr0G0f2J7Y priority: 102 providerName: ProQuest |
Title | Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36984779 https://www.proquest.com/docview/2791670471 https://www.proquest.com/docview/2792505203 https://pubmed.ncbi.nlm.nih.gov/PMC10052551 https://doaj.org/article/8f2ead64044e416784a5458f5d3ad66e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJqG9IGB8BEZlJARPASd2EucBoe6LgbQKISrtzXIceyBt6dZmEv3vuXPS0ojxwmMTW459d77fXc8_A7yuTSI96kVMZPuxrJSIyyqzceGFQaU2jjvKd5xO8pOp_HKWnf2pf-oXcHFraEf3SU3nF-9-XS8_osF_oIgTQ_b3l67FBaPNmOPvu7CNXqkgIz3toX63KyMy4UnH23hLtx24J_IS92oq6tpwUYHJ_-_9esNhDYspN7zT8QO438NKNu704CHccc0j2B03GFJfLtkbFgo9QwZ9F3R3ONf32To28-yAZD9nh3Oq0mBERb1g1ZJ97rkk0L2xcFKXjjAv2KFpDaMELvtEdNeMCD5w8ElXUb54DNPjo-8HJ3F_z0Jssyxt47oUuU-EzW1ppM8Vr_Ok9i7NbInhVmYwqkChpYnz6Mgy7qrS56VTVWm94byW4glsNbPGPQOmrKqtqK2yTkpjhCmM51WmrLEKxZ5GEK-WVtuehJzuwrjQGIyQVPRQKhG8Xbe_6ug3_tlynyS1bkW02eHBbH6ueyvUyqdoObnkUjpEooWShv449Fkt8HHucDiSsyZ1w8_Cr-7OKODkiCZLjxFvFURxh8PtDVqiUdrh65Wm6JVO67RALF5whAMRvFq_pp5U6Na42U1oQ6A05SKCp51irae00s8I1EDlBnMevml-_giU4Qml_xEcP___ri9gJ0WAF47zyz3Yauc37iUCsrYawfb-0eTrt1FIaIyC3f0GAuI50w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJTHQgEj8ThFdWIncQ4Ibbstu7RdIdRKvRnHsWklmpRNKrR_it_ITF5shODWa-zEdubp8fgbQl5n2hcO-MJDsH1PpJJ7SRoaL3ZcA1NryyzGO44X0exUfDoLzzbIr-4uDKZVdjqxVtRZYTBGvhPE4MjEDHTph6sfHlaNwtPVroRGwxaHdvUTtmzl-_kU6PsmCA72T_ZmXltVwDNhGFRelvDI-dxEJtHCRZJlkZ85G4Qmgc1FqMGHhikGvnWgtkNm08RFiZVpYpxmLBMcvnuLbAoOW5kR2dzdX3z-0kd1GOwOYuY36JCcJ2zn0lZATbQUjGNF8jXrVxcJ-NsUrNnCYZ7mmuE7uEfuth4rnTQsdp9s2PwB2ZrksFu_XNG3tM4hrYPzW0Q1935dGwikhaN7yFZLOl1iAghFlOuSpis6b2EqwHLS-hIw3o4u6VRXmmJsmH5EJG2K2CEw-KJJVi8fktMb-dmPyCgvcvuEUGlkZnhmpLFCaM11rB1LQ2m0kcBRwZh43a9VpsU3xzIb3xXsc5AUakiKMXnX979qkD3-2XMXKdX3QkTu-kGx_KZaAVfSBSCUkWBCWHByYyk0nkm6MOPwOLIwHNJZod6AacGsm-sPsDhE4FITcOViRM-D4bYHPUHezbC54xTV6ptS_ZGOMXnVN-ObmEOX2-K67oP-bsD4mDxuGKtfEo8ScFPw43LAcoM1D1vyi_MajdzHkwXwu5_-f14vye3ZyfGROpovDp-ROwH4ijUygNgmo2p5bZ-Db1elL1qBouTrTcvwb6E4ZNU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEFAeCwWMxOMUrRM7iXNAaNvt0qWwqhCVejOOY9NKNCmbVGj_Gr-OmbzYCMGt19iJ7czDM-PxN4S8zLQvHPCFh2D7nkgl95I0NF7suAam1pZZjHd8WkaHJ-LDaXi6RX51d2EwrbLTibWizgqDMfJJEIMhEzPQpRPXpkUcz-bvLn94WEEKT1q7choNixzZ9U9w38q3ixnQ-lUQzA--7B96bYUBz4RhUHlZwiPncxOZRAsXSZZFfuZsEJoEHI1Qgz0N0w1860CFh8ymiYsSK9PEOM1YJjh89wbZjsErYiOyvXewPP7cR3gYeAox8xukSM4TNrmwFVAWdw3GsTr5xk5YFwz4e1vY2BeHOZsbm-D8DrndWq902rDbXbJl83tkZ5qD536xpq9pnU9aB-p3iGruALs2KEgLR_eRxVZ0tsJkEIqI1yVN13TRQlbALkrrC8F4U7qkM11pinFi-h5RtSniiMDgyyZxvbxPTq7lZz8go7zI7SNCpZGZ4ZmRxgqhNdexdiwNpdFGAncFY-J1v1aZFuscS258V-DzICnUkBRj8qbvf9mgfPyz5x5Squ-F6Nz1g2L1TbXCrqQLQEAjwYSwYPDGUmg8n3RhxuFxZGE4pLNCHQLTglk3VyFgcYjGpaZg1sWIpAfD7Q56guybYXPHKarVPaX6Iylj8qJvxjcxny63xVXdB23fgPExedgwVr8kHiVgsuDH5YDlBmsetuTnZzUyuY-nDGCDP_7_vJ6TmyC76uNiefSE3ArAbKxBAsQuGVWrK_sUzLwqfdbKEyVfr1uEfwMbpGkK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Cancer+Driver+Genes+by+Integrating+Multiomics+Data+with+Graph+Neural+Networks&rft.jtitle=Metabolites&rft.au=Song%2C+Hongzhi&rft.au=Yin%2C+Chaoyi&rft.au=Li%2C+Zhuopeng&rft.au=Feng%2C+Ke&rft.date=2023-02-24&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fmetabo13030339&rft_id=info%3Apmid%2F36984779&rft.externalDocID=PMC10052551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |