Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks

Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehen...

Full description

Saved in:
Bibliographic Details
Published inMetabolites Vol. 13; no. 3; p. 339
Main Authors Song, Hongzhi, Yin, Chaoyi, Li, Zhuopeng, Feng, Ke, Cao, Yangkun, Gu, Yujie, Sun, Huiyan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein–protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
AbstractList Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
Audience Academic
Author Sun, Huiyan
Yin, Chaoyi
Li, Zhuopeng
Gu, Yujie
Song, Hongzhi
Feng, Ke
Cao, Yangkun
AuthorAffiliation 1 School of Artificial Intelligence, Jilin University, Changchun 130012, China
2 College of Computer Science and Technology, Jilin University, Changchun 130012, China
AuthorAffiliation_xml – name: 1 School of Artificial Intelligence, Jilin University, Changchun 130012, China
– name: 2 College of Computer Science and Technology, Jilin University, Changchun 130012, China
Author_xml – sequence: 1
  givenname: Hongzhi
  orcidid: 0009-0004-3097-871X
  surname: Song
  fullname: Song, Hongzhi
– sequence: 2
  givenname: Chaoyi
  surname: Yin
  fullname: Yin, Chaoyi
– sequence: 3
  givenname: Zhuopeng
  surname: Li
  fullname: Li, Zhuopeng
– sequence: 4
  givenname: Ke
  surname: Feng
  fullname: Feng, Ke
– sequence: 5
  givenname: Yangkun
  orcidid: 0000-0001-7240-5486
  surname: Cao
  fullname: Cao, Yangkun
– sequence: 6
  givenname: Yujie
  surname: Gu
  fullname: Gu, Yujie
– sequence: 7
  givenname: Huiyan
  orcidid: 0000-0002-4664-7147
  surname: Sun
  fullname: Sun, Huiyan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36984779$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhi1UREvolSNaiUsvKfb6Y9cnVKUQIhW4wNnyeseJw8YO3t1W_fdMmn4Fgecwq_Ez7_q15zU5iikCIW8ZPedc0w8bGGyTGKcYXL8gJ2XJ6inTtT569n1MTvt-TXEpKivKXpFjrnQtqkqfELNoIQ7BB2eHkGKRfDGz0UEuLnO4xjSHCH3R3BaLOMAyIxWXxdexQ3oTXF9c2sEWN2FYFfNst6viG4zZdpiGm5R_9W_IS2-7Hk7v84T8_Pzpx-zL9Or7fDG7uJo6Kcth2mquPONOOW2FVzVtFWs9lNJpJoS0nKraQsnAV6yWFBrtlYa60c5bSlvBJ2Sx122TXZttDhubb02ywdwVUl4am4fgOjC1L8G2SlAhQDBV1cJKIWsvW45lBaj1ca-1HZsNtA4vCC0diB7uxLAyy3RtGKWylJKhwtm9Qk6_R-gHswm9g66zEdLYm7LSpUQWn21C3v-FrtOYI97VjsLjUVGxJ2pp0UGIPuGP3U7UXFSCVwpDI3X-DwqjBXwrnB0fsH7Q8O6500eLD_OBgNgDLqe-z-CNC8PdpKBy6NCx2U2iOZzEp4M8tj0o_6fhD0qb3zo
CitedBy_id crossref_primary_10_1371_journal_pcbi_1012400
crossref_primary_10_20935_AcadBiol7325
crossref_primary_10_3390_metabo14050258
crossref_primary_10_3390_cancers15245858
crossref_primary_10_1111_jcmm_70351
crossref_primary_10_3390_biology12071033
crossref_primary_10_3390_agronomy13061477
Cites_doi 10.1099/0022-1317-78-4-879
10.14778/2904121.2904125
10.1007/s10911-008-9079-3
10.1371/journal.pone.0077945
10.1038/s41419-021-04460-7
10.1073/pnas.1616440113
10.1038/s41467-021-24841-y
10.1016/j.gene.2019.144223
10.2147/OTT.S208060
10.1016/S1359-6349(08)71197-2
10.2174/2212796814999200728185759
10.1186/s12943-019-1033-z
10.1186/s12935-016-0291-8
10.1073/pnas.2202157119
10.3109/08977194.2014.982276
10.1109/CVPR.2019.00943
10.1093/bioinformatics/btr357
10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
10.1093/nar/gkr952
10.1007/BF00994018
10.21203/rs.3.rs-25296/v1
10.1016/j.mcp.2017.04.004
10.1038/s41568-018-0060-1
10.1038/nmeth.3440
10.1186/s12859-018-2040-6
10.1145/3534678.3539418
10.1038/s42256-021-00325-y
10.1016/j.cell.2018.02.060
10.1186/s13045-020-00937-8
10.1093/bioinformatics/bty232
10.12659/MSM.929558
10.1111/cas.15157
10.1038/s41419-018-1258-6
10.1155/2016/5128720
10.1016/j.cell.2016.12.013
10.1007/s11010-020-03950-0
10.1101/cshperspect.a019505
10.1186/gb-2012-13-12-r124
10.1038/nature08658
10.1007/978-3-030-57077-4_10
10.1093/nar/gku1204
10.1126/science.1235122
10.1038/nature10983
10.1038/nrc3447
10.1109/TITS.2020.3026025
10.1097/MD.0000000000024898
10.1186/s12943-020-01259-6
10.1016/j.bbrc.2021.01.017
10.1038/ng.2764
10.1038/s41598-017-03021-3
10.1038/nmeth.2642
10.1111/j.1471-4159.2010.07049.x
10.3389/fgene.2022.884028
10.1101/015883
10.1038/nature12213
10.1093/nar/gku1393
10.17305/bjbms.2018.2756
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7QR
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/metabo13030339
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_8f2ead64044e416784a5458f5d3ad66e
PMC10052551
A743767679
36984779
10_3390_metabo13030339
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Special Project for Medical and Sanitary Talent of Jilin Province
  grantid: JLSWSRCZZX2021- 039
– fundername: National Natural Science Foundation of China
  grantid: 61902144
– fundername: Special Project for Medical and Sanitary Talent of Jilin Province
  grantid: JLSWSRCZZX2021-039
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
7QR
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c552t-d936f13c6c9a4f680d61dfe25c91445a3068ae21ef71850eb9f69e8b9cfa00d43
IEDL.DBID M48
ISSN 2218-1989
IngestDate Wed Aug 27 01:22:03 EDT 2025
Thu Aug 21 18:38:02 EDT 2025
Fri Jul 11 08:32:05 EDT 2025
Fri Jul 25 11:57:42 EDT 2025
Tue Jun 17 22:08:11 EDT 2025
Tue Jun 10 21:07:34 EDT 2025
Thu Jan 02 22:52:09 EST 2025
Tue Jul 01 00:44:19 EDT 2025
Thu Apr 24 22:49:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cancer driver gene
PPI network
multiomics data
graph neural network
biomarker
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-d936f13c6c9a4f680d61dfe25c91445a3068ae21ef71850eb9f69e8b9cfa00d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0009-0004-3097-871X
0000-0001-7240-5486
0000-0002-4664-7147
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo13030339
PMID 36984779
PQID 2791670471
PQPubID 2032362
ParticipantIDs doaj_primary_oai_doaj_org_article_8f2ead64044e416784a5458f5d3ad66e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10052551
proquest_miscellaneous_2792505203
proquest_journals_2791670471
gale_infotracmisc_A743767679
gale_infotracacademiconefile_A743767679
pubmed_primary_36984779
crossref_citationtrail_10_3390_metabo13030339
crossref_primary_10_3390_metabo13030339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230224
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 2
  year: 2023
  text: 20230224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Metabolites
PublicationTitleAlternate Metabolites
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Sondka (ref_43) 2018; 18
ref_14
ref_58
ref_13
Breitkreutz (ref_28) 2015; 43
ref_57
ref_56
ref_11
ref_55
ref_53
Tokheim (ref_27) 2016; 113
ref_52
Weinstein (ref_21) 2013; 45
Budach (ref_8) 2021; 3
ref_19
ref_18
ref_16
Sontag (ref_54) 2010; 115
ref_15
ref_59
Kumar (ref_42) 2021; 15
Sucularli (ref_36) 2017; 34
ref_61
ref_60
Zhu (ref_17) 2020; 33
Craene (ref_44) 2013; 13
Gnauck (ref_47) 1997; 78
ref_62
Cortes (ref_32) 2004; 20
Adzhubei (ref_40) 2013; 76
ref_26
Wensheng (ref_4) 2018; 34
Curtis (ref_51) 2012; 486
Bradner (ref_10) 2017; 168
Vogelstein (ref_3) 2013; 339
Kilpinen (ref_45) 2008; 13
ref_34
ref_33
Creixell (ref_12) 2015; 12
Janes (ref_63) 2014; 32
Wong (ref_29) 2011; 27
ref_31
ref_30
ref_39
Tamborero (ref_22) 2013; 10
ref_38
Hamosh (ref_23) 2000; 15
Lo (ref_35) 2021; 541
Pleasance (ref_25) 2010; 463
Pendino (ref_24) 2012; 40
Liu (ref_20) 2022; 23
Chen (ref_46) 2019; 18
ref_1
ref_2
Zhou (ref_64) 2019; 12
ref_49
ref_48
Lin (ref_37) 2021; 476
ref_5
ref_7
Lawrence (ref_9) 2013; 499
ref_6
Bailey (ref_41) 2018; 173
References_xml – volume: 78
  start-page: 879
  year: 1997
  ident: ref_47
  article-title: A cis-acting element 7 bp upstream of the ESF-1-binding motif is involved in E1A 13S autoregulation of the adenovirus 12 TS2 promoter
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-78-4-879
– ident: ref_31
  doi: 10.14778/2904121.2904125
– volume: 13
  start-page: 259
  year: 2008
  ident: ref_45
  article-title: Role of ErbB4 in breast cancer
  publication-title: J. Mammary Gland. Biol. Neoplasia
  doi: 10.1007/s10911-008-9079-3
– ident: ref_5
  doi: 10.1371/journal.pone.0077945
– ident: ref_52
  doi: 10.1038/s41419-021-04460-7
– volume: 113
  start-page: 14330
  year: 2016
  ident: ref_27
  article-title: Evaluating the evaluation of cancer driver genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1616440113
– ident: ref_16
– ident: ref_60
  doi: 10.1038/s41467-021-24841-y
– ident: ref_50
  doi: 10.1016/j.gene.2019.144223
– volume: 12
  start-page: 6001
  year: 2019
  ident: ref_64
  article-title: The role of PEG3 in the occurrence and prognosis of colon cancer
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S208060
– ident: ref_2
  doi: 10.1016/S1359-6349(08)71197-2
– volume: 15
  start-page: 69
  year: 2021
  ident: ref_42
  article-title: Understanding Molecular Process and Chemotherapeutics for the Management of Breast Cancer
  publication-title: Curr. Chem. Biol.
  doi: 10.2174/2212796814999200728185759
– volume: 18
  start-page: 1285
  year: 2019
  ident: ref_46
  article-title: The role of m6A RNA methylation in human cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1033-z
– ident: ref_59
  doi: 10.1186/s12935-016-0291-8
– ident: ref_1
  doi: 10.1073/pnas.2202157119
– volume: 32
  start-page: 176
  year: 2014
  ident: ref_63
  article-title: EphA3 biology and cancer
  publication-title: Growth Factors
  doi: 10.3109/08977194.2014.982276
– ident: ref_15
  doi: 10.1109/CVPR.2019.00943
– volume: 27
  start-page: 2147
  year: 2011
  ident: ref_29
  article-title: CHASM and SNVBox: Toolkit for detecting biologically important single nucleotide mutations in cancer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr357
– volume: 33
  start-page: 7793
  year: 2020
  ident: ref_17
  article-title: Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 57
  year: 2000
  ident: ref_23
  article-title: Online Mendelian Inheritance In Man (OMIM)
  publication-title: Hum. Mutat.
  doi: 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
– volume: 40
  start-page: D978
  year: 2012
  ident: ref_24
  article-title: Network of Cancer Genes (NCG 3.0): Integration and analysis of genetic and network properties of cancer genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr952
– volume: 20
  start-page: 273
  year: 2004
  ident: ref_32
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_49
  doi: 10.21203/rs.3.rs-25296/v1
– volume: 34
  start-page: 21
  year: 2017
  ident: ref_36
  article-title: Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H1
  publication-title: Mol. Cell. Probes
  doi: 10.1016/j.mcp.2017.04.004
– volume: 18
  start-page: 696
  year: 2018
  ident: ref_43
  article-title: The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0060-1
– volume: 12
  start-page: 615
  year: 2015
  ident: ref_12
  article-title: Pathway and network analysis of cancer genomes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3440
– ident: ref_33
  doi: 10.1186/s12859-018-2040-6
– ident: ref_18
  doi: 10.1145/3534678.3539418
– volume: 3
  start-page: 513
  year: 2021
  ident: ref_8
  article-title: Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00325-y
– ident: ref_7
– ident: ref_30
– volume: 173
  start-page: 371
  year: 2018
  ident: ref_41
  article-title: Comprehensive characterization of cancer driver genes and mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.060
– ident: ref_55
  doi: 10.1186/s13045-020-00937-8
– volume: 34
  start-page: i404
  year: 2018
  ident: ref_4
  article-title: Driver gene mutations based clustering of tumors: Methods and applications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty232
– ident: ref_56
  doi: 10.12659/MSM.929558
– ident: ref_57
  doi: 10.1111/cas.15157
– ident: ref_14
– volume: 76
  start-page: 7
  year: 2013
  ident: ref_40
  article-title: Predicting functional effect of human missense mutations using PolyPhen-2
  publication-title: Curr. Protoc. Hum. Genet.
– ident: ref_34
  doi: 10.1038/s41419-018-1258-6
– ident: ref_58
  doi: 10.1155/2016/5128720
– volume: 168
  start-page: 629
  year: 2017
  ident: ref_10
  article-title: Transcriptional Addiction in Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.013
– volume: 476
  start-page: 853
  year: 2021
  ident: ref_37
  article-title: Methylation of RILP in lung cancer promotes tumor cell proliferation and invasion
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-020-03950-0
– ident: ref_11
  doi: 10.1101/cshperspect.a019505
– ident: ref_6
  doi: 10.1186/gb-2012-13-12-r124
– volume: 463
  start-page: 191
  year: 2010
  ident: ref_25
  article-title: A comprehensive catalogue of somatic mutations from a human cancer genome
  publication-title: Nature
  doi: 10.1038/nature08658
– ident: ref_26
  doi: 10.1007/978-3-030-57077-4_10
– volume: 43
  start-page: D470
  year: 2015
  ident: ref_28
  article-title: The BioGRID interaction database: 2015 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1204
– volume: 339
  start-page: 1546
  year: 2013
  ident: ref_3
  article-title: [Special Issue Review] Cancer Genome Landscapes
  publication-title: Science
  doi: 10.1126/science.1235122
– volume: 486
  start-page: 346
  year: 2012
  ident: ref_51
  article-title: The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 13
  start-page: 97
  year: 2013
  ident: ref_44
  article-title: Regulatory networks defining EMT during cancer initiation and progression
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3447
– volume: 23
  start-page: 1755
  year: 2022
  ident: ref_20
  article-title: GraphSAGE-Based Traffic Speed Forecasting for Segment Network with Sparse Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3026025
– ident: ref_61
  doi: 10.1097/MD.0000000000024898
– ident: ref_62
  doi: 10.1186/s12943-020-01259-6
– volume: 541
  start-page: 70
  year: 2021
  ident: ref_35
  article-title: Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2021.01.017
– volume: 45
  start-page: 1113
  year: 2013
  ident: ref_21
  article-title: The Cancer Genome Atlas Pan-Cancer analysis project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2764
– ident: ref_48
  doi: 10.1038/s41598-017-03021-3
– ident: ref_19
– volume: 10
  start-page: 1081
  year: 2013
  ident: ref_22
  article-title: IntOGen-mutations identifies cancer drivers across tumor types
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2642
– volume: 115
  start-page: 1455
  year: 2010
  ident: ref_54
  article-title: Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2010.07049.x
– ident: ref_13
  doi: 10.3389/fgene.2022.884028
– ident: ref_38
  doi: 10.1101/015883
– volume: 499
  start-page: 214
  year: 2013
  ident: ref_9
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– ident: ref_39
  doi: 10.1093/nar/gku1393
– ident: ref_53
  doi: 10.17305/bjbms.2018.2756
SSID ssj0000605701
Score 2.279482
Snippet Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 339
SubjectTerms Biological analysis
biomarker
Cancer
cancer driver gene
Classification
Computer applications
Datasets
DNA methylation
Epigenetics
Gene expression
Genetic aspects
Genomes
graph neural network
Metabolism
Methods
multiomics data
Mutation
Neural networks
Oncology, Experimental
PPI network
Precision medicine
Transcriptomics
Tumors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QeXYprYyE4BThxI84xy1vJDiBxM1yHFtUKtlqNxz498zYYZUIIS5c40n8mLHnkZnPhBw0NhcB5CJDsP1M1JpnVS1dVgZuQaitZx7jHTe36vJeXD_Ih8FVX5gTluCB08Id61DAZJVgQngwHkotLP7rCbLh8Fh5PH1B5w2cqXQGgx3C8oTSyMGvP37yHawqntiM483gAy0UwfrfH8kDnTTOlxwooPPvZK23HOk0jXidrPh2g2xOW_Can17oIY25nDFIvklMqr8NfUCOzgI9QfbO6ekcEzEook0vaP1Cr3q4CNBgNBbjYpXygp7azlKM0dILRLSmiOEBnd-mpPHFFrk_P7s7ucz6qxQyJ2XRZU3FVci5U66yIijNGpU3wRfSVeBRSQuOA_ClyH0AXSWZr6ugKq_rygXLWCP4NlltZ63_Qah2unG8cdp5IazltrSB1VI76zRwtpiQ7G1pjetxxvG6i38G_A1khRmzYkKOlvT_E8LGh5R_kFNLKkTGjg9AXkwvL-YzeYHukM8G9y8MC0adyhBgcoiEZaZgUpWIYgfd7Y0oYd-5cfObpJh-3y9MUYK5XTLQ-BOyv2zGNzGXrfWz50iDdmfB-ITsJMFaTomrCswF_LgeidxozuOW9u9jRAXPMcIP9u_uV6zST_KtAGsu1u6LPbLazZ_9L7C-uvp33Giv3PAunQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHksFGQkBKeoTvyIc0LbFwWJFUJU6s1yHLsg0aRs0kP_PTOON2yE4BrPru3MezL-TMibxuYigFxkCLafiVrzrKqly8rALQi19cxjvePzSp2di08X8iIV3PrUVrmxidFQN53DGvlBUUIgUzKwpe-vf2V4axR-XU1XaNwlu2CCNSRfu4cnqy9fpyoLg2i9ZPmI1sghvz-48gO8XbTcjOMN4VveKIL2_22at3zTvG9yyxGdPiD3UwRJlyPLH5I7vn1E9pYtZM9Xt_QtjT2dsVi-R8x4DjekwhztAj1CNq_p8RobMiiiTve0vqUfE2wEeDIaD-XiaeWeHtvBUqzV0g-IbE0RywMmX43N4_1jcn568u3oLEtXKmROymLImoqrkHOnXGVFUJo1Km-CL6SrILOSFhII4E-R-wA-SzJfV0FVXteVC5axRvAnZKftWv-MUO1043jjtPNCWMttaQOrpXbWaeBwsSDZ5tUal_DG8dqLnwbyDmSFmbNiQd5N9Ncj0sY_KQ-RUxMVImTHB9360iSFMzoUoCRKMCE8BJ2lFha_EQbZcHisPEyHfDaox7AsWPV4HAE2h4hYZgmhVYlodjDd_owS9M_NhzeSYpL-9-aPtC7I62kYf4k9ba3vbiINxp8F4wvydBSsaUtcVRA24J_rmcjN9jwfaX98j-jgOVb6IQ5-_v91vSD3CojX4ul8sU92hvWNfwnx1VC_Skr0G0f2J7Y
  priority: 102
  providerName: ProQuest
Title Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/36984779
https://www.proquest.com/docview/2791670471
https://www.proquest.com/docview/2792505203
https://pubmed.ncbi.nlm.nih.gov/PMC10052551
https://doaj.org/article/8f2ead64044e416784a5458f5d3ad66e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJqG9IGB8BEZlJARPASd2EucBoe6LgbQKISrtzXIceyBt6dZmEv3vuXPS0ojxwmMTW459d77fXc8_A7yuTSI96kVMZPuxrJSIyyqzceGFQaU2jjvKd5xO8pOp_HKWnf2pf-oXcHFraEf3SU3nF-9-XS8_osF_oIgTQ_b3l67FBaPNmOPvu7CNXqkgIz3toX63KyMy4UnH23hLtx24J_IS92oq6tpwUYHJ_-_9esNhDYspN7zT8QO438NKNu704CHccc0j2B03GFJfLtkbFgo9QwZ9F3R3ONf32To28-yAZD9nh3Oq0mBERb1g1ZJ97rkk0L2xcFKXjjAv2KFpDaMELvtEdNeMCD5w8ElXUb54DNPjo-8HJ3F_z0Jssyxt47oUuU-EzW1ppM8Vr_Ok9i7NbInhVmYwqkChpYnz6Mgy7qrS56VTVWm94byW4glsNbPGPQOmrKqtqK2yTkpjhCmM51WmrLEKxZ5GEK-WVtuehJzuwrjQGIyQVPRQKhG8Xbe_6ug3_tlynyS1bkW02eHBbH6ueyvUyqdoObnkUjpEooWShv449Fkt8HHucDiSsyZ1w8_Cr-7OKODkiCZLjxFvFURxh8PtDVqiUdrh65Wm6JVO67RALF5whAMRvFq_pp5U6Na42U1oQ6A05SKCp51irae00s8I1EDlBnMevml-_giU4Qml_xEcP___ri9gJ0WAF47zyz3Yauc37iUCsrYawfb-0eTrt1FIaIyC3f0GAuI50w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJTHQgEj8ThFdWIncQ4Ibbstu7RdIdRKvRnHsWklmpRNKrR_it_ITF5shODWa-zEdubp8fgbQl5n2hcO-MJDsH1PpJJ7SRoaL3ZcA1NryyzGO44X0exUfDoLzzbIr-4uDKZVdjqxVtRZYTBGvhPE4MjEDHTph6sfHlaNwtPVroRGwxaHdvUTtmzl-_kU6PsmCA72T_ZmXltVwDNhGFRelvDI-dxEJtHCRZJlkZ85G4Qmgc1FqMGHhikGvnWgtkNm08RFiZVpYpxmLBMcvnuLbAoOW5kR2dzdX3z-0kd1GOwOYuY36JCcJ2zn0lZATbQUjGNF8jXrVxcJ-NsUrNnCYZ7mmuE7uEfuth4rnTQsdp9s2PwB2ZrksFu_XNG3tM4hrYPzW0Q1935dGwikhaN7yFZLOl1iAghFlOuSpis6b2EqwHLS-hIw3o4u6VRXmmJsmH5EJG2K2CEw-KJJVi8fktMb-dmPyCgvcvuEUGlkZnhmpLFCaM11rB1LQ2m0kcBRwZh43a9VpsU3xzIb3xXsc5AUakiKMXnX979qkD3-2XMXKdX3QkTu-kGx_KZaAVfSBSCUkWBCWHByYyk0nkm6MOPwOLIwHNJZod6AacGsm-sPsDhE4FITcOViRM-D4bYHPUHezbC54xTV6ptS_ZGOMXnVN-ObmEOX2-K67oP-bsD4mDxuGKtfEo8ScFPw43LAcoM1D1vyi_MajdzHkwXwu5_-f14vye3ZyfGROpovDp-ROwH4ijUygNgmo2p5bZ-Db1elL1qBouTrTcvwb6E4ZNU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEFAeCwWMxOMUrRM7iXNAaNvt0qWwqhCVejOOY9NKNCmbVGj_Gr-OmbzYCMGt19iJ7czDM-PxN4S8zLQvHPCFh2D7nkgl95I0NF7suAam1pZZjHd8WkaHJ-LDaXi6RX51d2EwrbLTibWizgqDMfJJEIMhEzPQpRPXpkUcz-bvLn94WEEKT1q7choNixzZ9U9w38q3ixnQ-lUQzA--7B96bYUBz4RhUHlZwiPncxOZRAsXSZZFfuZsEJoEHI1Qgz0N0w1860CFh8ymiYsSK9PEOM1YJjh89wbZjsErYiOyvXewPP7cR3gYeAox8xukSM4TNrmwFVAWdw3GsTr5xk5YFwz4e1vY2BeHOZsbm-D8DrndWq902rDbXbJl83tkZ5qD536xpq9pnU9aB-p3iGruALs2KEgLR_eRxVZ0tsJkEIqI1yVN13TRQlbALkrrC8F4U7qkM11pinFi-h5RtSniiMDgyyZxvbxPTq7lZz8go7zI7SNCpZGZ4ZmRxgqhNdexdiwNpdFGAncFY-J1v1aZFuscS258V-DzICnUkBRj8qbvf9mgfPyz5x5Squ-F6Nz1g2L1TbXCrqQLQEAjwYSwYPDGUmg8n3RhxuFxZGE4pLNCHQLTglk3VyFgcYjGpaZg1sWIpAfD7Q56guybYXPHKarVPaX6Iylj8qJvxjcxny63xVXdB23fgPExedgwVr8kHiVgsuDH5YDlBmsetuTnZzUyuY-nDGCDP_7_vJ6TmyC76uNiefSE3ArAbKxBAsQuGVWrK_sUzLwqfdbKEyVfr1uEfwMbpGkK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Cancer+Driver+Genes+by+Integrating+Multiomics+Data+with+Graph+Neural+Networks&rft.jtitle=Metabolites&rft.au=Song%2C+Hongzhi&rft.au=Yin%2C+Chaoyi&rft.au=Li%2C+Zhuopeng&rft.au=Feng%2C+Ke&rft.date=2023-02-24&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fmetabo13030339&rft_id=info%3Apmid%2F36984779&rft.externalDocID=PMC10052551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon