Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks

Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehen...

Full description

Saved in:
Bibliographic Details
Published inMetabolites Vol. 13; no. 3; p. 339
Main Authors Song, Hongzhi, Yin, Chaoyi, Li, Zhuopeng, Feng, Ke, Cao, Yangkun, Gu, Yujie, Sun, Huiyan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein–protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2218-1989
2218-1989
DOI:10.3390/metabo13030339