24-hour human urine and serum profiles of bisphenol A: Evidence against sublingual absorption following ingestion in soup

Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to <1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently dem...

Full description

Saved in:
Bibliographic Details
Published inToxicology and applied pharmacology Vol. 288; no. 2; pp. 131 - 142
Main Authors Teeguarden, Justin G., Twaddle, Nathan C., Churchwell, Mona I., Yang, Xiaoxia, Fisher, Jeffrey W., Seryak, Liesel M., Doerge, Daniel R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to <1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently demonstrated in dogs, could lead to the higher serum BPA concentrations reported in some human biomonitoring studies. We hypothesized that the extensive interaction with the oral mucosa by a liquid matrix, like soup, relative to solid food or capsules, might enhance absorption through non-metabolizing oral cavity tissues in humans, producing higher bioavailability and higher serum BPA concentrations. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24hour period in 10 adult male volunteers following ingestion of 30μg d6-BPA/kg body weight in soup. Absorption of d6-BPA was rapid (t1/2=0.45h) and elimination of the administered dose was complete 24h post-ingestion, evidence against any tissue depot for BPA. The maximum serum d6-BPA concentration was 0.43nM at 1.6h after administration and represented <0.3% of total d6-BPA. Pharmacokinetic parameters, pharmacokinetic model simulations, and the significantly faster appearance half-life of d6-BPA-glucuronide compared to d6-BPA (0.29h vs 0.45h) were evidence against meaningful absorption of BPA in humans through any non-metabolizing tissue (<1%). This study confirms that typical exposure to BPA in food produces picomolar to subpicomolar serum BPA concentrations in humans, not nM concentrations reported in some biomonitoring studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-ACT-SA-10045
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2015.01.009