Does the combination of citrate and phytase exudation in Nicotiana tabacum promote the acquisition of endogenous soil organic phosphorus?
Background and Aims: Plant acquisition of endogenous forms of soil phosphorus (P) could reduce external P requirements in agricultural systems. This study investigated the interaction of citrate and phytase exudation in controlling the accumulation of P and depletion of soil organic P by transgenic...
Saved in:
Published in | Plant and soil Vol. 412; no. 1/2; pp. 43 - 59 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.03.2017
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background and Aims: Plant acquisition of endogenous forms of soil phosphorus (P) could reduce external P requirements in agricultural systems. This study investigated the interaction of citrate and phytase exudation in controlling the accumulation of P and depletion of soil organic P by transgenic Nicotiana tabacum plants. Methods: N. tabacum plant lines including wild-type, vector controls, transgenic plants with single-trait expression of a citrate transporter (A. thaliana frd3) or fungal phytases (phyA: A. niger, P. lycii) and crossed plant lines expressing both traits, were characterized for citrate efflux and phytase exudation. Monocultures and intercropped combinations of single-trait plants were grown in a low available P soil (12 weeks). Plant biomass, shoot P accumulation, rhizosphere soil pH and citrate-extractable-P fractions were determined. Land Equivalent Ratio and complementarity effect was determined in intercropped treatments and multiple-linearregression was used to predict shoot P accumulation based on plant exudation and soil P depletion. Results: Crossed plant lines with co-expression of citrate and phytase accumulated more shoot P than single-trait and intercropped plant treatments. Shoot P accumulation was predicted based on phytase-labile soil P, citrate efflux, and phytase activity (Rsq=0.58, P < .0001). Positive complementarity occurred between intercropped citrate-and phytase-exuding plants, with the greatest gains in shoot P occurring in plant treatments with A. niger phyA expression. Conclusions: We show for the first time that trait synergism associated with the exudation of citrate and phytase by tobacco can be linked to the improved acquisition of P and the depletion of soil organic P. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-016-2884-3 |