Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication

Many RNA viruses remodel intracellular membranes to generate specialized sites for RNA replication. How membranes are remodeled and what properties make them conducive for replication are unknown. Here we show how RNA viruses can manipulate multiple components of the cellular secretory pathway to ge...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 141; no. 5; pp. 799 - 811
Main Authors Hsu, Nai-Yun, Ilnytska, Olha, Belov, Georgiy, Santiana, Marianita, Chen, Ying-Han, Takvorian, Peter M., Pau, Cyrilla, van der Schaar, Hilde, Kaushik-Basu, Neerja, Balla, Tamas, Cameron, Craig E., Ehrenfeld, Ellie, van Kuppeveld, Frank J.M., Altan-Bonnet, Nihal
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many RNA viruses remodel intracellular membranes to generate specialized sites for RNA replication. How membranes are remodeled and what properties make them conducive for replication are unknown. Here we show how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell. Specific viral proteins modulate effector recruitment by Arf1 GTPase and its guanine nucleotide exchange factor GBF1, promoting preferential recruitment of phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) to membranes over coat proteins, yielding uncoated phosphatidylinositol-4-phosphate (PI4P) lipid-enriched organelles. The PI4P-rich lipid microenvironment is essential for both enteroviral and flaviviral RNA replication; PI4KIIIβ inhibition interferes with this process; and enteroviral RNA polymerases specifically bind PI4P. These findings reveal how RNA viruses can selectively exploit specific elements of the host to form specialized organelles where cellular phosphoinositide lipids are key to regulating viral RNA replication. [Display omitted] [Display omitted] ► RNA viruses generate specialized RNA replication organelles enriched in PI4P lipids ► Host PI4KIIIβ enzyme is co-opted by the virus to generate PI4P lipid-rich organelles ► Enteroviral RNA polymerases specifically and preferentially bind PI4P lipids ► PI4P microenvironment is essential for enteroviral and flaviviral RNA synthesis
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to this work
ISSN:0092-8674
1097-4172
1097-4172
DOI:10.1016/j.cell.2010.03.050