Single‐Cell Patch‐Clamp/Proteomics of Human Alzheimer's Disease iPSC‐Derived Excitatory Neurons Versus Isogenic Wild‐Type Controls Suggests Novel Causation and Therapeutic Targets
Standard single‐cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single‐cell physiology. Here, a scPatch‐Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) geneti...
Saved in:
Published in | Advanced science Vol. 11; no. 29; pp. e2400545 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Standard single‐cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single‐cell physiology. Here, a scPatch‐Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild‐type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single‐cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC‐neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch‐proteomics technique creates a new proteogenetic‐therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single‐cells.
A single‐cell patch‐clamp/mass spectrometry‐based proteomics platform (scPatch‐Clamp/Proteomics) is developed to discover in diseased versus control neurons differentially‐expressed proteins as potential therapeutic targets. Human (h)iPSC‐derived excitatory neurons with Alzheimer's disease (AD) mutation or isogenic control are studied. Mediation analysis shows AD mutation drives protein changes, which then mediate a hyperelectrical phenotype in AD hiPSC‐neurons, similar to that observed in AD brain. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202400545 |