Sequential generation of linear cluster states from a single photon emitter

Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources co...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 5501
Main Authors Istrati, D., Pilnyak, Y., Loredo, J. C., Antón, C., Somaschi, N., Hilaire, P., Ollivier, H., Esmann, M., Cohen, L., Vidro, L., Millet, C., Lemaître, A., Sagnes, I., Harouri, A., Lanco, L., Senellart, P., Eisenberg, H. S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.10.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes. Generating photonic cluster states using a single non-heralded source and a single entangling gate would optimise scalability and reduce resource overhead. Here, the authors generate up to 4-photon cluster states using a quantum dot coupled to a fibre loop, with a fourfold generation rate of 10 Hz.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-19341-4