Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage
To improve the utility of native grass resources as feed in China, we investigated the dynamics of protein and carbohydrate fractions among Inner Mongolian native grasses, during ensiling and the aerobic stage, using the Cornell Net Carbohydrate and Protein System. Silages were prepared without or w...
Saved in:
Published in | Animal bioscience Vol. 33; no. 4; pp. 556 - 567 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Asian - Australasian Association of Animal Production Societies
01.04.2020
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) Asian-Australasian Association of Animal Production Societies 아세아·태평양축산학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To improve the utility of native grass resources as feed in China, we investigated the dynamics of protein and carbohydrate fractions among Inner Mongolian native grasses, during ensiling and the aerobic stage, using the Cornell Net Carbohydrate and Protein System.
Silages were prepared without or with lactic acid bacteria (LAB) inoculant. We analyzed the protein and carbohydrate fractions and fermentation quality of silages at 0, 5, 15, 20, 30, and 60 d of ensiling, and the stability at 0.5, 2, 5, and 10 d during the aerobic stage.
Inner Mongolian native grass contained 10.8% crude protein (CP) and 3.6% water-soluble carbohydrates (WSC) on a dry matter basis. During ensiling, pH and CP and WSC content decreased (p<0.05), whereas lactic acid and ammonia nitrogen (N) content increased (p<0.05). Non-protein N (PA) content increased significantly, whereas rapidly degraded true protein (PB1), intermediately degraded true protein (PB2), total carbohydrate (CHO), sugars (CA), starch (CB1), and degradable cell wall carbohydrate (CB2) content decreased during ensiling (p<0.05). At 30 d of ensiling, control and LAB-treated silages were well preserved and had lower pH (<4.2) and ammonia-N content (<0.4 g/kg of fresh matter [FM]) and higher lactic acid content (>1.0% of FM). During the aerobic stage, CP, extract ether, WSC, lactic acid, acetic acid, PB1, PB2, true protein degraded slowly (PB3), CHO, CA, CB1, and CB2 content decreased significantly in all silages, whereas pH, ammonia-N, PA, and bound true protein (PC) content increased significantly.
Control and LAB-treated silages produced similar results in terms of fermentation quality, aerobic stability, and protein and carbohydrate fractions. Inner Mongolian native grass produced good silage, nutrients were preserved during ensiling and protein and carbohydrate losses largely occurred during the aerobic stage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1011-2367 2765-0189 1976-5517 2765-0235 |
DOI: | 10.5713/ajas.19.0212 |