Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy

The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in su...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 11; no. 12; p. 2471
Main Authors Chiriac, Aurica P, Ghilan, Alina, Serban, Alexandru-Mihail, Macsim, Ana-Maria, Bargan, Alexandra, Doroftei, Florica, Chiriac, Vlad Mihai, Nita, Loredana Elena, Rusu, Alina Gabriela, Sandu, Andreea-Isabela
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution. The investigations revealed that, with the exception of the molecular masses, the compounds generated by the two synthetic procedures present similar properties, including good thermal stability, with a T of 456 °C, and the capacity for network formation. In addition, the investigation by dynamic light scattering techniques evidenced a mean diameter for PEBSA particles of around 596 nm and a zeta potential of -25 mV, which attests to their stability. The bio-based copolymacrolactone was used as a matrix for erythritol encapsulation. The new PEBSA-Eryt compound presented an increased sorption/desorption process, compared with the PEBSA matrix, and a crystalline morphology confirmed by X-ray diffraction analysis. The bioactive compound was also characterised in terms of its biocompatibility and antioxidant behaviour.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11122471