Glucocorticoid Receptor-induced MAPK Phosphatase-1 (MPK-1) Expression Inhibits Paclitaxel-associated MAPK Activation and Contributes to Breast Cancer Cell Survival

Glucocorticoid receptor (GR) activation has recently been shown to inhibit apoptosis in breast epithelial cells. We have previously described a group of genes that is rapidly up-regulated in these cells following dexamethasone (Dex) treatment. In an effort to dissect the mechanisms of GR-mediated br...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 6; pp. 4117 - 4124
Main Authors Wu, Wei, Pew, Travis, Zou, Min, Pang, Diana, Conzen, Suzanne D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.02.2005
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glucocorticoid receptor (GR) activation has recently been shown to inhibit apoptosis in breast epithelial cells. We have previously described a group of genes that is rapidly up-regulated in these cells following dexamethasone (Dex) treatment. In an effort to dissect the mechanisms of GR-mediated breast epithelial cell survival, we now examine the molecular events downstream of GR activation. Here we show that GR activation leads to both the rapid induction of MAPK phosphatase-1 (MKP-1) mRNA and its sustained expression. Induction of the MKP-1 protein in the MCF10A-Myc and MDA-MB-231 breast epithelial cell lines was also seen. Paclitaxel treatment resulted in MAPK activation and apoptosis of MDA-MB-231 breast cancer cells, and both processes were inhibited by Dex pretreatment. Furthermore, induction of MKP-1 correlated with the inhibition of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) activity, whereas p38 activity was minimally affected. Blocking Dex-induced MKP-1 induction using small interfering RNA increased ERK1/2 and JNK phosphorylation and decreased cell survival. ERK1/2 and JNK inactivation was associated with Ets-like transcription factor-1 (ELK-1) dephosphorylation. To explore the gene expression changes that occur downstream of ELK-1 dephosphorylation, we used a combination of temporal gene expression data and promoter element analyses. This approach revealed a previously unrecognized transcriptional target of ELK-1, the human tissue plasminogen activator (tPA). We verified the predicted ELK-1 → tPA transcriptional regulatory relationship using a luciferase reporter assay. We conclude that GR-mediated MAPK inactivation contributes to cell survival and that the potential transcriptional targets of this inhibition can be identified from large scale gene array analysis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M411200200