The Mitochondrial Permeability Transition Pore and Nitric Oxide Synthase Mediate Early Mitochondrial Depolarization in Astrocytes during Oxygen-Glucose Deprivation

Recent studies suggest that the degree of mitochondrial dysfunction in cerebral ischemia may be an important determinant of the final extent of tissue injury. Although loss of mitochondrial membrane potential (psi(m)), one index of mitochondrial dysfunction, has been documented in neurons exposed to...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 21; no. 17; pp. 6608 - 6616
Main Authors Reichert, Susan A, Kim-Han, Jeong Sook, Dugan, Laura L
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.09.2001
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies suggest that the degree of mitochondrial dysfunction in cerebral ischemia may be an important determinant of the final extent of tissue injury. Although loss of mitochondrial membrane potential (psi(m)), one index of mitochondrial dysfunction, has been documented in neurons exposed to ischemic conditions, it is not yet known whether astrocytes, which are relatively resistant to ischemic injury, experience changes in psi(m) under similar conditions. To address this, we exposed cortical astrocytes cultured alone or with neurons to oxygen-glucose deprivation (OGD) and monitored psi(m) using tetramethylrhodamine ethyl ester. Both neurons and astrocytes exhibited profound loss of psi(m) after 45-60 min of OGD. However, although this exposure is lethal to nearly all neurons, it is hours less than that needed to kill astrocytes. Astrocyte psi(m) was rescued during OGD by cyclosporin A, a permeability transition pore blocker, and (G)N-nitro-arginine, a nitric oxide synthase inhibitor. Loss of mitochondrial membrane potential in astrocytes was not accompanied by depolarization of the plasma membrane. Recovery of astrocyte psi(m) after reintroduction of O(2) and glucose occurred over a surprisingly long period (>1 hr), suggesting that OGD caused specific, reversible changes in astrocyte mitochondrial physiology beyond the simple lack of O(2) and glucose. Decreased psi(m) was associated with a cyclosporin A-sensitive loss of cytochrome c but not with activation of caspase-3 or caspase-9. Our data suggest that astrocyte mitochondrial depolarization could be a previously unrecognized event early in ischemia and that strategies that target the mitochondrial component of ischemic injury may benefit astrocytes as well as neurons.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.21-17-06608.2001