Genetic analysis of monoallelic double MYH7 mutations responsible for familial hypertrophic cardiomyopathy
β‑myosin heavy chain (MHC) 7 (MYH7) is the dominant pathogenic gene that harbors mutations in 20‑30% of cases of familial hypertrophic cardiomyopathy (HCM). The aim of this study was to elucidate the distribution and type of genetic variations among Chinese HCM families. From 2013 to 2017, the clini...
Saved in:
Published in | Molecular medicine reports Vol. 20; no. 6; pp. 5229 - 5238 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Greece
Spandidos Publications
01.12.2019
Spandidos Publications UK Ltd D.A. Spandidos |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | β‑myosin heavy chain (MHC) 7 (MYH7) is the dominant pathogenic gene that harbors mutations in 20‑30% of cases of familial hypertrophic cardiomyopathy (HCM). The aim of this study was to elucidate the distribution and type of genetic variations among Chinese HCM families. From 2013 to 2017, the clinical data of 387 HCM probands and their families were collected. Targeted exome‑sequencing technology was used in all probands, and the selected mutations were subsequently verified by Sanger sequencing in the probands, family members and 300 healthy ethnic‑matched volunteers. Three‑dimensional models were created using Swiss‑PdbViewer 4.1, and further genetic analyses were performed to determine sequence conservation and frequency of the mutations. Among the 5 probands with double MYH7 mutations, 4 carried compound heterozygous mutations, and 1 carried monoallelic double mutations (A934V and E1387K). Four family members of the proband with monoallelic double mutations had the same mutation as the proband. Echocardiography and 12‑lead electrocardiography revealed abnormalities in the proband and 3 of the 4 carriers. The probands with compound heterozygous mutation had a higher left ventricular mass as revealed by echocardiography and higher QRS, SV1 and RV5+SV1 amplitudes than those with monoallelic double mutations (P<0.05). Simulation of the 3D structure of mutated proteins showed that the replacement of alanine by valine affected the flexibility of the MHC neck domain in case of the A934V mutation, whereas reactivity of the MHC rod domain was affected in the case of the E1387K mutation. In conclusion, we identified several novel HCM‑causing MYH7 mutations. More importantly, this is the first study to report a rare HCM family with monoallelic double mutations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed equally |
ISSN: | 1791-2997 1791-3004 |
DOI: | 10.3892/mmr.2019.10754 |