Nanoparticle-Mediated Therapy with miR-198 Sensitizes Pancreatic Cancer to Gemcitabine Treatment through Downregulation of VCP-Mediated Autophagy

Pancreatic ductal adenocarcinoma (PDAC) remains an extremely aggressive disease characterized by rapidly acquired multi-drug resistance, including to first-line chemotherapeutic agent gemcitabine. Autophagy is a process that is often exploited by cancer and is one of several intrinsic factors associ...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 15; no. 8; p. 2038
Main Authors Marin-Muller, Christian, Li, Dali, Lü, Jian-Ming, Liang, Zhengdong, Vega-Martínez, Osvaldo, Crawford, Sue E, Estes, Mary K, Fisher, William E, Chen, Changyi, Yao, Qizhi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.07.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pancreatic ductal adenocarcinoma (PDAC) remains an extremely aggressive disease characterized by rapidly acquired multi-drug resistance, including to first-line chemotherapeutic agent gemcitabine. Autophagy is a process that is often exploited by cancer and is one of several intrinsic factors associated with resistance to gemcitabine. We have previously found that miR-198 acts as a tumor suppressor in PDAC through the targeting of factors including Valosin-containing protein (VCP). VCP has been reported to play an important role in autophagic flux. In this study, we investigated whether the repression of VCP through miR-198 administration disrupts the autophagy process and sensitizes PDAC cells to gemcitabine treatment in vitro. Moreover, we used LGA-PEI (LPNP) nanoparticles to effectively administer miR-198 to tumors in vivo, inducing tumor sensitization to gemcitabine and leading to a significant reduction in tumor burden and metastases and a concomitant downregulation of VCP expression and autophagy maturation. Our results indicate a potential therapeutic strategy for targeting gemcitabine resistant PDAC and establishes the use of LPNPs for effective therapeutic delivery of nucleic acids in vitro and in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics15082038